Subcloning

Last updated
This image diagrams the procedure of subcloning as outlined to the left. Subcloning.png
This image diagrams the procedure of subcloning as outlined to the left.

In molecular biology, subcloning is a technique used to move a particular DNA sequence from a parent vector to a destination vector.

Contents

Subcloning is not to be confused with molecular cloning, a related technique.

Procedure

Restriction enzymes are used to excise the gene of interest (the insert) from the parent. The insert is purified in order to isolate it from other DNA molecules. A common purification method is gel isolation. The number of copies of the gene is then amplified using polymerase chain reaction (PCR).

Simultaneously, the same restriction enzymes are used to digest (cut) the destination. The idea behind using the same restriction enzymes is to create complementary sticky ends, which will facilitate ligation later on. A phosphatase, commonly calf-intestinal alkaline phosphatase (CIAP), is also added to prevent self-ligation of the destination vector. The digested destination vector is isolated/purified.

The insert and the destination vector are then mixed together with DNA ligase. A typical molar ratio of insert genes to destination vectors is 3:1; [1] by increasing the insert concentration, self-ligation is further decreased. After letting the reaction mixture sit for a set amount of time at a specific temperature (dependent upon the size of the strands being ligated; for more information see DNA ligase), the insert should become successfully incorporated into the destination plasmid.

Amplification of product plasmid

The plasmid is often transformed into a bacterium like E. coli. Ideally when the bacterium divides the plasmid should also be replicated. In the best case scenario, each bacterial cell should have several copies of the plasmid. After a good number of bacterial colonies have grown, they can be miniprepped to harvest the plasmid DNA.

Selection

In order to ensure growth of only transformed bacteria (which carry the desired plasmids to be harvested), a marker gene is used in the destination vector for selection. Typical marker genes are for antibiotic resistance or nutrient biosynthesis. So, for example, the "marker gene" could be for resistance to the antibiotic ampicillin. If the bacteria that were supposed to pick up the desired plasmid had picked up the desired gene then they would also contain the "marker gene". Now the bacteria that picked up the plasmid would be able to grow in ampicillin whereas the bacteria that did not pick up the desired plasmid would still be vulnerable to destruction by the ampicillin. Therefore, successfully transformed bacteria would be "selected."

Example case: bacterial plasmid subcloning

In this example, a gene from mammalian gene library will be subcloned into a bacterial plasmid (destination platform). The bacterial plasmid is a piece of circular DNA which contains regulatory elements allowing for the bacteria to produce a gene product (gene expression) if it is placed in the correct place in the plasmid. The production site is flanked by two restriction enzyme cutting sites "A" and "B" with incompatible sticky ends.

The mammalian DNA does not come with these restriction sites, so they are built in by overlap extension PCR. The primers are designed to put the restriction sites carefully, so that the coding of the protein is in-frame, and a minimum of extra amino acids is implanted on either side of the protein.

Both the PCR product containing the mammalian gene with the new restriction sites and the destination plasmid are subjected to restriction digestion, and the digest products are purified by gel electrophoresis.

The digest products, now containing compatible sticky ends with each other (but incompatible sticky ends with themselves) are subjected to ligation, creating a new plasmid which contains the background elements of the original plasmid with a different insert.

The plasmid is transformed into bacteria and the identity of the insert is confirmed by DNA sequencing.

See also

Related Research Articles

Plasmid Small DNA molecule within a cell that is physically separated from a chromosomal DNA and can replicate independently

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation.

Cloning vector

A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector therefore contains features that allow for the convenient insertion or removal of a DNA fragment to or from the vector, for example by treating the vector and the foreign DNA with a restriction enzyme that cuts the DNA. DNA fragments thus generated contain either blunt ends or overhangs known as sticky ends, and vector DNA and foreign DNA with compatible ends can then be joined together by molecular ligation. After a DNA fragment has been cloned into a cloning vector, it may be further subcloned into another vector designed for more specific use.

A cDNA library is a combination of cloned cDNA fragments inserted into a collection of host cells, which constitute some portion of the transcriptome of the organism and are stored as a "library". cDNA is produced from fully transcribed mRNA found in the nucleus and therefore contains only the expressed genes of an organism. Similarly, tissue-specific cDNA libraries can be produced. In eukaryotic cells the mature mRNA is already spliced, hence the cDNA produced lacks introns and can be readily expressed in a bacterial cell. While information in cDNA libraries is a powerful and useful tool since gene products are easily identified, the libraries lack information about enhancers, introns, and other regulatory elements found in a genomic DNA library.

Library (biology)

In molecular biology, a library is a collection of DNA fragments that is stored and propagated in a population of micro-organisms through the process of molecular cloning. There are different types of DNA libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. DNA library technology is a mainstay of current molecular biology, genetic engineering, and protein engineering, and the applications of these libraries depend on the source of the original DNA fragments. There are differences in the cloning vectors and techniques used in library preparation, but in general each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated.

A restriction digest is a procedure used in molecular biology to prepare DNA for analysis or other processing. It is sometimes termed DNA fragmentation. Hartl and Jones describe it this way:

This enzymatic technique can be used for cleaving DNA molecules at specific sites, ensuring that all DNA fragments that contain a particular sequence at a particular location have the same size; furthermore, each fragment that contains the desired sequence has the sequence located at exactly the same position within the fragment. The cleavage method makes use of an important class of DNA-cleaving enzymes isolated primarily from bacteria. These enzymes are called restriction endonucleases or restriction enzymes, and they are able to cleave DNA molecules at the positions at which particular short sequences of bases are present.

Multiple cloning site

A multiple cloning site (MCS), also called a polylinker, is a short segment of DNA which contains many restriction sites - a standard feature of engineered plasmids. Restriction sites within an MCS are typically unique, occurring only once within a given plasmid. The purpose of a MCS in a plasmid is to allow a piece of DNA to be inserted into that region. A MCS is found in a variety of vectors, including cloning vectors to increase the number of copies of target DNA, and in expression vectors to create a protein product. In expression vectors, the MCS is located downstream of the promoter.

Plasmid preparation

A plasmid preparation is a method of DNA extraction and purification for plasmid DNA. Many methods have been developed to purify plasmid DNA from bacteria. These methods invariably involve three steps:

A genomic library is a collection of the total genomic DNA from a single organism. The DNA is stored in a population of identical vectors, each containing a different insert of DNA. In order to construct a genomic library, the organism's DNA is extracted from cells and then digested with a restriction enzyme to cut the DNA into fragments of a specific size. The fragments are then inserted into the vector using DNA ligase. Next, the vector DNA can be taken up by a host organism - commonly a population of Escherichia coli or yeast - with each cell containing only one vector molecule. Using a host cell to carry the vector allows for easy amplification and retrieval of specific clones from the library for analysis.

Blue–white screen DNA screening technique

The blue–white screen is a screening technique that allows for the rapid and convenient detection of recombinant bacteria in vector-based molecular cloning experiments. DNA of interest is ligated into a vector. The vector is then inserted into a competent host cell viable for transformation, which are then grown in the presence of X-gal. Cells transformed with vectors containing recombinant DNA will produce white colonies; cells transformed with non-recombinant plasmids grow into blue colonies. This method of screening is usually performed using a suitable bacterial strain, but other organisms such as yeast may also be used.

In cell biology, ways in which fragmentation is useful for a cell: DNA cloning and apoptosis. DNA cloning is important in asexual reproduction or creation of identical DNA molecules, and can be performed spontaneously by the cell or intentionally by laboratory researchers. Apoptosis is the programmed destruction of cells, and the DNA molecules within them, and is a highly regulated process. These two ways in which fragmentation is used in cellular processes describe normal cellular functions and common laboratory procedures performed with cells. However, problems within a cell can sometimes cause fragmentation that results in irregularities such as red blood cell fragmentation and sperm cell DNA fragmentation.

BioBrick

BioBrick parts are DNA sequences which conform to a restriction-enzyme assembly standard. These building blocks are used to design and assemble larger synthetic biological circuits from individual parts and combinations of parts with defined functions, which would then be incorporated into living cells such as Escherichia coli cells to construct new biological systems. Examples of BioBrick parts include promoters, ribosomal binding sites (RBS), coding sequences and terminators.

Artificial gene synthesis

Artificial gene synthesis, or gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides de novo. Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory. It comprises two main steps, the first of which is solid-phase DNA synthesis, sometimes known as DNA printing. This produces oligonucleotide fragments that are generally under 200 base pairs. The second step then involves connecting these oligonucleotide fragments using various DNA assembly methods. Because artificial gene synthesis does not require template DNA, it is theoretically possible to make a completely synthetic DNA molecules with no limits on the nucleotide sequence or size.

NdeI is an endonuclease isolated from Neisseria denitrificans.

In molecular cloning, a vector is a DNA molecule used as a vehicle to artificially carry foreign genetic material into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors have an origin of replication, a multicloning site, and a selectable marker.

The Gateway cloning System, invented and commercialized by Invitrogen since the late 1990s, is a molecular biology method that enables researchers to efficiently transfer DNA-fragments between plasmids using a proprietary set of recombination sequences, the "Gateway att" sites, and two proprietary enzyme mixes, called "LR Clonase", and "BP Clonase". Gateway Cloning Technique allows transfer of DNA fragments between different cloning vectors while maintaining the reading frame. Using Gateway, one can clone subclone DNA segments for functional analysis. The system requires the initial insertion of a DNA fragment into a plasmid with two flanking recombination sequences called “att L 1” and “att L 2”, to develop a “Gateway Entry clone”.

Ligation-independent cloning (LIC) is a form of molecular cloning that is able to be performed without the use of restriction endonucleases or DNA ligase. The technique was developed in the early 1990s as an alternative to restriction enzyme/ligase cloning. This allows genes that have restriction sites to be cloned without worry of chopping up the inserted gene of interest.

Molecular cloning

Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

Genetic engineering techniques

Genetic engineering can be accomplished using multiple techniques. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism. The ability to genetically engineer organisms is built on years of research and discovery on how genes function and how we can manipulate them. Important advances included the discovery of restriction enzymes and DNA ligases and the development of polymerase chain reaction and sequencing.

Ligation (molecular biology)

In molecular biology, ligation is the joining of two nucleic acid fragments through the action of an enzyme. It is an essential laboratory procedure in the molecular cloning of DNA whereby DNA fragments are joined together to create recombinant DNA molecules, such as when a foreign DNA fragment is inserted into a plasmid. The ends of DNA fragments are joined together by the formation of phosphodiester bonds between the 3'-hydroxyl of one DNA terminus with the 5'-phosphoryl of another. RNA may also be ligated similarly. A co-factor is generally involved in the reaction, and this is usually ATP or NAD+.

Golden Gate Cloning

Golden Gate cloning or Golden Gate assembly is a molecular cloning method that allows a researcher to simultaneously and directionally assemble multiple DNA fragments into a single piece using Type IIs restriction enzymes and T4 DNA ligase. This assembly is performed in vitro. Most commonly used Type IIS enzymes include BsaI, BsmBI, and BbsI.

References

  1. Williams, Steven A.; et al. (2006). Laboratory Investigations in Molecular Biology. p. 213. ISBN   9780763733292.