Hydrogen cycle

Last updated

The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds.

Contents

Hydrogen (H) is the most abundant element in the universe. [1] On Earth, common H-containing inorganic molecules include water (H2O), hydrogen gas (H2), hydrogen sulfide (H2S), and ammonia (NH3). Many organic compounds also contain H atoms, such as hydrocarbons and organic matter. Given the ubiquity of hydrogen atoms in inorganic and organic chemical compounds, the hydrogen cycle is focused on molecular hydrogen, H2.

As a consequence of microbial metabolisms or naturally occurring rock-water interactions, hydrogen gas can be created. Other bacteria may then consume free H2, which may also be oxidised photochemically in the atmosphere or lost to space. Hydrogen is also thought to be an important reactant in pre-biotic chemistry and the early evolution of life on Earth, and potentially elsewhere in the Solar System. [2]

Abiotic cycles

Sources

Abiotic sources of hydrogen gas include water-rock and photochemical reactions. Exothermic serpentinization reactions between water and olivine minerals produce H2 in the marine or terrestrial subsurface. [3] [4] In the ocean, hydrothermal vents erupt magma and altered seawater fluids including abundant H2, depending on the temperature regime and host rock composition. [5] [4] Molecular hydrogen can also be produced through photooxidation (via solar UV radiation) of some mineral species such as siderite in anoxic aqueous environments. This may have been an important process in the upper regions of early Earth's Archaean oceans. [6]

Sinks

Because H2 is the lightest element, atmospheric H2 can readily be lost to space via Jeans escape, an irreversible process that drives Earth's net mass loss. [7] Photolysis of heavier compounds not prone to escape, such as CH4 or H2O, can also liberate H2 from the upper atmosphere and contribute to this process. Another major sink of free atmospheric H2 is photochemical oxidation by hydroxyl radicals (•OH), which forms water.[ citation needed ]

Anthropogenic sinks of H2 include synthetic fuel production through the Fischer-Tropsch reaction and artificial nitrogen fixation through the Haber-Bosch process to produce nitrogen fertilizers.[ citation needed ]

Biotic cycles

Many microbial metabolisms produce or consume H2.

Production

Hydrogen is produced by hydrogenases and nitrogenases enzymes in many microorganisms, some of which are being studied for their potential for biofuel production. [8] [9] These H2-metabolizing enzymes are found in all three domains of life, and out of known genomes over 30% of microbial taxa contain hydrogenase genes. [10] Fermentation produces H2 from organic matter as part of the anaerobic microbial food chain [11] via light-dependent or light-independent pathways. [8]

Consumption

Biological soil uptake is the dominant sink of atmospheric H2. [12] Both aerobic and anaerobic microbial metabolisms consume H2 by oxidizing it in order to reduce other compounds during respiration. Aerobic H2 oxidation is known as the Knallgas reaction. [13]

Anaerobic H2 oxidation often occurs during interspecies hydrogen transfer in which H2 produced during fermentation is transferred to another organism, which uses the H2 to reduce CO2 to CH4 or acetate, SO2−
4
to H2S, or Fe3+ to Fe2+. Interspecies hydrogen transfer keeps H2 concentrations very low in most environments because fermentation becomes less thermodynamically favorable as the partial pressure of H2 increases. [11]

Relevance for the global climate

H2 can interfere with the removal of methane from the atmosphere, a greenhouse gas. Typically, atmospheric CH4 is oxidized by hydroxyl radicals (OH), but H2 can also react with OH to reduce it to H2O. [14]

  1. CH4 + OH → CH3 + H2O
  2. H2 + OH → H + H2O

Implications for astrobiology

Hydrothermal H2 may have played a major role in pre-biotic chemistry. [15] Production of H2 by serpentinization supported formation of the reactants proposed in the iron-sulfur world origin of life hypothesis. [16] The subsequent evolution of hydrogenotrophic methanogenesis is hypothesized as one of the earliest metabolisms on Earth. [17] [2]

Serpentinization can occur on any planetary body with chondritic composition. The discovery of H2 on other ocean worlds, such as Enceladus, [18] [19] [20] suggests that similar processes are ongoing elsewhere in the Solar System, and potentially in other planetary systems as well. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Hydrogen</span> Chemical element, symbol H and atomic number 1

Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H2. It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds. For the most common isotope of hydrogen each atom has one proton, one electron, and no neutrons.

<span class="mw-page-title-main">Miller–Urey experiment</span> Experiment testing the origin of life

The Miller–Urey experiment (or Miller experiment) was an experiment in chemical synthesis carried out in 1952 that simulated the conditions thought at the time to be present in the atmosphere of the early, prebiotic Earth. It is seen as one of the first successful experiments demonstrating the synthesis of organic compounds from inorganic constituents in an origin of life scenario. The experiment used methane (CH4), ammonia (NH3), hydrogen (H2), in ratio 2:2:1, and water (H2O). Applying an electric arc (the latter simulating lightning) resulted in the production of amino acids.

<span class="mw-page-title-main">Heterotroph</span> Organism that ingests organic carbon for nutrition

A heterotroph is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include all animals and fungi, some bacteria and protists, and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. The term is now used in many fields, such as ecology, in describing the food chain.

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They belong to the domain Archaea and are members of the phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and can occur in the digestive tracts of animals including ruminants and humans, where they are responsible for the methane content of belching and flatulence. In marine sediments, the biological production of methane, termed methanogenesis, is generally confined to where sulfates are depleted below the top layers and methanogens play an indispensable role in anaerobic wastewater treatments. Other methanogens are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group phylogenetically distinct from both eukaryotes and bacteria, although many live in close association with anaerobic bacteria. The production of methane is an important and widespread form of microbial metabolism. In anoxic environments, it is the final step in the decomposition of biomass. Methanogenesis is responsible for significant amounts of natural gas accumulations, the remainder being thermogenic.

<span class="mw-page-title-main">Hydroxyl radical</span> Neutral form of the hydroxide ion (OH−)

The hydroxyl radical, HO, is the neutral form of the hydroxide ion (HO). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are produced from the decomposition of hydroperoxides (ROOH) or, in atmospheric chemistry, by the reaction of excited atomic oxygen with water. It is also an important radical formed in radiation chemistry, since it leads to the formation of hydrogen peroxide and oxygen, which can enhance corrosion and SCC in coolant systems subjected to radioactive environments. Hydroxyl radicals are also produced during UV-light dissociation of H2O2 (suggested in 1879) and likely in Fenton chemistry, where trace amounts of reduced transition metals catalyze peroxide-mediated oxidations of organic compounds.

<span class="mw-page-title-main">Sulfate-reducing microorganism</span> Microorganisms that "breathe" sulfates

Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO2−
4
) as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration.

<span class="mw-page-title-main">Serpentinization</span> Formation of serpentinite by hydration and metamorphic transformation of olivine

Serpentinization is a hydration and metamorphic transformation of ferromagnesian minerals, such as olivine and pyroxene, in mafic and ultramafic rock to produce serpentinite. Minerals formed by serpentinization include the serpentine group minerals, brucite, talc, Ni-Fe alloys, and magnetite. The mineral alteration is particularly important at the sea floor at tectonic plate boundaries.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

In biology, syntrophy, syntrophism, or cross-feeding is the cooperative interaction between at least two microbial species to degrade a single substrate. This type of biological interaction typically involves the transfer of one or more metabolic intermediates between two or more metabolically diverse microbial species living in close proximity to each other. Thus, syntrophy can be considered an obligatory interdependency and a mutualistic metabolism between different microbial species, wherein the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other(s).

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

Hydrogen-oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter use sulphate or nitrogen dioxide as electron acceptors. Species of both types have been isolated from a variety of environments, including fresh waters, sediments, soils, activated sludge, hot springs, hydrothermal vents and percolating water.

<span class="mw-page-title-main">Methane</span> Hydrocarbon compound (CH₄); main component of natural gas

Methane is a chemical compound with the chemical formula CH4. It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

<span class="mw-page-title-main">Autotroph</span> Organism type

An autotroph is an organism that produces complex organic compounds using carbon from simple substances such as carbon dioxide, generally using energy from light (photosynthesis) or inorganic chemical reactions (chemosynthesis). They convert an abiotic source of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

Sulfurimonas is a bacterial genus within the class of Campylobacterota, known for reducing nitrate, oxidizing both sulfur and hydrogen, and containing Group IV hydrogenases. This genus consists of four species: Sulfurimonas autorophica, Sulfurimonas denitrificans, Sulfurimonas gotlandica, and Sulfurimonas paralvinellae. The genus' name is derived from "sulfur" in Latin and "monas" from Greek, together meaning a “sulfur-oxidizing rod”. The size of the bacteria varies between about 1.5-2.5 μm in length and 0.5-1.0 μm in width. Members of the genus Sulfurimonas are found in a variety of different environments which include deep sea-vents, marine sediments, and terrestrial habitats. Their ability to survive in extreme conditions is attributed to multiple copies of one enzyme. Phylogenetic analysis suggests that members of the genus Sulfurimonas have limited dispersal ability and its speciation was affected by geographical isolation rather than hydrothermal composition. Deep ocean currents affect the dispersal of Sulfurimonas spp., influencing its speciation. As shown in the MLSA report of deep-sea hydrothermal vents Campylobacterota, Sulfurimonas has a higher dispersal capability compared with deep sea hydrothermal vent thermophiles, indicating allopatric speciation.

<span class="mw-page-title-main">Enceladus Life Finder</span> Proposed NASA mission to a moon of Saturn

Enceladus Life Finder (ELF) is a proposed astrobiology mission concept for a NASA spacecraft intended to assess the habitability of the internal aquatic ocean of Enceladus, which is Saturn's sixth-largest moon of at least 146 total moons, and seemingly similar in chemical makeup to comets. The spaceprobe would orbit Saturn and fly through Enceladus's geyser-like plumes multiple times. It would be powered by energy supplied from solar panels on the spacecraft.

<span class="mw-page-title-main">Hydrothermal vent microbial communities</span> Undersea unicellular organisms

The hydrothermal vent microbial community includes all unicellular organisms that live and reproduce in a chemically distinct area around hydrothermal vents. These include organisms in the microbial mat, free floating cells, or bacteria in an endosymbiotic relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these ecosystems is a burgeoning field of research.

Formatotrophs are organisms that can assimilate formate or formic acid to use as a carbon source or for reducing power. Some authors classify formatotrophs as one of the five trophic groups of methanogens, which also include hydrogenotrophs, acetotrophs, methylotrophs, and alcoholotrophs. Formatotrophs have garnered attention for applications in biotechnology as part of a "formate bioeconomy" in which synthesized formate could be used as a nutrient for microoganisms. Formate can be electrochemically synthesized from CO2 and renewable energy, and formatotrophs may be genetically modified to enhance production of biochemical products to be used as biofuels. Technical limitations in culturing formatotrophs have limited the discovery of natural formatotrophs and impeded research on their formate-metabolizing enzymes, which are of interest for applications in carbon sequestration and astrobiology.

<span class="mw-page-title-main">Prebiotic atmosphere</span>

The prebiotic atmosphere is the second atmosphere present on Earth before today's biotic, oxygen-rich third atmosphere, and after the first atmosphere of Earth's formation. The formation of the Earth, roughly 4.5 billion years ago, involved multiple collisions and coalescence of planetary embryos. This was followed by a <100 million year period on Earth where a magma ocean was present, the atmosphere was mainly steam, and surface temperatures reached up to 8,000 K (14,000 °F). Earth's surface then cooled and the atmosphere stabilized, establishing the prebiotic atmosphere. The environmental conditions during this time period were quite different from today: the Sun was ~30% dimmer overall yet brighter at ultraviolet and x-ray wavelengths, there was a liquid ocean, it is unknown if there were continents but oceanic islands were likely, Earth's interior chemistry was different, and there was a larger flux of impactors hitting Earth's surface.

References

  1. Cameron AG (1973). "Abundances of the elements in the solar system". Space Science Reviews. 15 (1): 121. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440. ISSN   0038-6308. S2CID   120201972.
  2. 1 2 Colman DR, Poudel S, Stamps BW, Boyd ES, Spear JR (July 2017). "The deep, hot biosphere: Twenty-five years of retrospection". Proceedings of the National Academy of Sciences of the United States of America. 114 (27): 6895–6903. doi: 10.1073/pnas.1701266114 . PMC   5502609 . PMID   28674200.
  3. Russell MJ, Hall AJ, Martin W (December 2010). "Serpentinization as a source of energy at the origin of life". Geobiology. 8 (5): 355–71. doi:10.1111/j.1472-4669.2010.00249.x. PMID   20572872.
  4. 1 2 Konn C, Charlou JL, Holm NG, Mousis O (May 2015). "The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge". Astrobiology. 15 (5): 381–99. Bibcode:2015AsBio..15..381K. doi:10.1089/ast.2014.1198. PMC   4442600 . PMID   25984920.
  5. Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, et al. (August 2011). "Hydrogen is an energy source for hydrothermal vent symbioses". Nature. 476 (7359): 176–80. Bibcode:2011Natur.476..176P. doi:10.1038/nature10325. PMID   21833083. S2CID   25578.
  6. Kim JD, Yee N, Nanda V, Falkowski PG (June 2013). "Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides". Proceedings of the National Academy of Sciences of the United States of America. 110 (25): 10073–7. Bibcode:2013PNAS..11010073K. doi: 10.1073/pnas.1308958110 . PMC   3690895 . PMID   23733945.
  7. Catling DC, Zahnle KJ, McKay C (August 2001). "Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth". Science. 293 (5531): 839–43. Bibcode:2001Sci...293..839C. doi:10.1126/science.1061976. PMID   11486082. S2CID   37386726.
  8. 1 2 Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (November 2017). "Microalgal hydrogen production - A review". Bioresource Technology. 243: 1194–1206. doi:10.1016/j.biortech.2017.07.085. PMID   28774676.
  9. Das D (2001). "Hydrogen production by biological processes: a survey of literature". International Journal of Hydrogen Energy. 26 (1): 13–28. doi:10.1016/S0360-3199(00)00058-6.
  10. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MW (June 2015). "[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation" (PDF). Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1853 (6): 1350–69. doi: 10.1016/j.bbamcr.2014.11.021 . PMID   25461840.
  11. 1 2 Kirchman DL (2011-02-02). Processes in Microbial Ecology. Oxford University Press. doi:10.1093/acprof:oso/9780199586936.001.0001. ISBN   9780199586936.
  12. Rhee TS, Brenninkmeijer CA, Röckmann T (2006-05-19). "The overwhelming role of soils in the global atmospheric hydrogen cycle". Atmospheric Chemistry and Physics. 6 (6): 1611–1625. Bibcode:2006ACP.....6.1611R. doi: 10.5194/acp-6-1611-2006 .
  13. 1 2 Seager S, Schrenk M, Bains W (January 2012). "An astrophysical view of Earth-based metabolic biosignature gases". Astrobiology. 12 (1): 61–82. Bibcode:2012AsBio..12...61S. doi:10.1089/ast.2010.0489. hdl: 1721.1/73073 . PMID   22269061.
  14. Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW (1999-12-01). "Molecular hydrogen in the troposphere: Global distribution and budget". Journal of Geophysical Research: Atmospheres. 104 (D23): 30427–30444. Bibcode:1999JGR...10430427N. doi: 10.1029/1999jd900788 .
  15. Colín-García M (2016). "Hydrothermal vents and prebiotic chemistry: a review". Boletín de la Sociedad Geológica Mexicana. 68 (3): 599–620. doi: 10.18268/BSGM2016v68n3a13 .
  16. Wächtershäuser G. "Origin of life in an iron–sulfur world". =The Molecular Origins of Life. Cambridge University Press. pp. 206–218. ISBN   9780511626180.
  17. Boyd ES, Schut GJ, Adams MW, Peters JW (2014-09-01). "Hydrogen Metabolism and the Evolution of Biological Respiration". Microbe Magazine. 9 (9): 361–367. doi:10.1128/microbe.9.361.1.
  18. Seewald JS (April 2017). "Detecting molecular hydrogen on Enceladus". Science. 356 (6334): 132–133. Bibcode:2017Sci...356..132S. doi:10.1126/science.aan0444. PMID   28408557. S2CID   206658660.
  19. Hsu HW, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, et al. (March 2015). "Ongoing hydrothermal activities within Enceladus". Nature. 519 (7542): 207–10. Bibcode:2015Natur.519..207H. doi:10.1038/nature14262. PMID   25762281. S2CID   4466621.
  20. Glein CR, Baross JA, Waite Jr JH (2015). "The pH of Enceladus' ocean". Geochimica et Cosmochimica Acta. 162: 202–219. arXiv: 1502.01946 . Bibcode:2015GeCoA.162..202G. doi:10.1016/j.gca.2015.04.017. S2CID   119262254.