Kepler-62b

Last updated
Kepler-62b
Discovery
Discovered by Borucki et al.
Discovery site Kepler Space Observatory
Discovery date18 April 2013 [1]
Transit (Kepler Mission) [1]
Orbital characteristics
0.0553 ± 0.0005 [1] AU
Eccentricity ~0 [1]
5.714932 ± 0.000009 [1] d
Inclination 89.2 ± 0.4 [1]
Star Kepler-62 (KOI-701)
Physical characteristics
Mean radius
1.31 ± 0.04 [1] R🜨
Mass <9 [1] ME
Temperature Teq: 750 K (477 °C; 890 °F)

    Kepler-62b (also known by its Kepler Object of Interest designation KOI-701.02) is the innermost and the second smallest discovered exoplanet orbiting the star Kepler-62, with a diameter roughly 30% larger than Earth. It was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It is likely to have an equilibrium temperature slightly higher than the surface temperature of Venus (around 750 K (477 °C; 890 °F)), high enough to melt some types of metal. [1] Its stellar flux is 70 ± 9 times Earth's. [1]

    Contents

    Physical characteristics

    Mass, radius and temperature

    Kepler-62b is a super-Earth, an exoplanet with a radius and mass bigger than Earth but smaller than that of the ice giants Neptune and Uranus. It has an equilibrium temperature of 750 K (477 °C; 890 °F). This is hot enough to melt some types of metal. It has a radius of 1.3 R🜨, [1] placing it below the estimated radius of ≤1.6 R🜨 where it would otherwise be a mini-Neptune with a volatile composition, with no solid surface. [2] However, the mass is currently not known, estimates place an upper limit of <9 ME, the actual mass is expected to be significantly lower than this. [1]

    Host star

    The planet orbits a (K-type) star named Kepler-62, orbited by a total of five planets, of which Kepler-62f has the lengthiest orbital period. [1] The star has a mass of 0.69 M and a radius of 0.64 R. It has a temperature of 4925 K and is 7 billion years old. [1] In comparison, the Sun is 4.6 billion years old [3] and has a surface temperature of 5778 K. [4]

    The star's apparent magnitude, or how bright it appears from Earth's perspective, is 13.65. Therefore, it is too dim to be seen with the naked eye.

    Orbit

    Kepler-62b orbits its host star with an orbital period of 5 days at a distance of about 0.05 AU (compared to the same distance as Mercury from the Sun, which is about 0.38 AU). It receives 70 times as much sunlight than Earth does from the Sun. [1]

    Discovery

    In 2009, NASA's Kepler spacecraft was completing observing stars on its photometer, the instrument it uses to detect transit events, in which a planet crosses in front of and dims its host star for a brief and roughly regular period of time. In this last test, Kepler observed 50000 stars in the Kepler Input Catalog, including Kepler-62; the preliminary light curves were sent to the Kepler science team for analysis, who chose obvious planetary companions from the bunch for follow-up at observatories. Observations for the potential exoplanet candidates took place between 13 May 2009 and 17 March 2012. After observing the respective transits, which for Kepler-62b occurred roughly every 5 days (its orbital period), it was eventually concluded that a planetary body was responsible for the periodic 5-day transits. The discovery, along with the planetary system of the star Kepler-69 were announced on April 18, 2013. [1]

    Related Research Articles

    Kepler-40b, formerly known as KOI-428b, is a hot Jupiter discovered in orbit around the star Kepler-40, which is about to become a red giant. The planet was first noted as a transit event by NASA's Kepler spacecraft. The Kepler team made data collected by its satellite publicly available, including data on Kepler-40; French and Swiss astronomers used the equivalent to one night of measurements on the SOPHIE échelle spectrograph to collect all the data needed to show that a planet was producing the periodic dimming of Kepler-40. The planet, Kepler-40b, is twice the mass of Jupiter and slightly larger than it in size, making it as dense as Neptune. The planet is also nearly thirteen times hotter than Jupiter and orbits five times closer to its star than Mercury is from the Sun.

    <span class="mw-page-title-main">Kepler-20f</span> Terrestrial planet orbiting Kepler-20

    Kepler-20f (also known by its Kepler Object of Interest designation KOI-070.05) is an exoplanet orbiting the Sun-like star Kepler-20, the second outermost of five such planets discovered by NASA's Kepler spacecraft. It is located approximately 929 light-years (285 parsecs, or about 8.988×1015 km) from Earth in the constellation Lyra. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. The planet is notable as it has the closest radius to Earth known so far.

    <span class="mw-page-title-main">Kepler-69c</span> Super-Earth orbiting Kepler-69

    Kepler-69c is a confirmed super-Earth extrasolar planet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.

    <span class="mw-page-title-main">Kepler-62e</span> Habitable-zone super-Earth planet orbiting Kepler-62

    Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 990 light-years from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.

    <span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

    Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

    Kepler-62c is an approximately Mars-sized exoplanet discovered in orbit around the star Kepler-62, the second innermost of five discovered by NASA's Kepler spacecraft around Kepler-62. At the time of discovery it was the second-smallest exoplanet discovered and confirmed by the Kepler spacecraft, after Kepler-37b. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 25 ± 3 times Earth's. It is similar to Mercury.

    Kepler-62d is the third innermost and the largest exoplanet discovered orbiting the star Kepler-62, with a size roughly twice the diameter of Earth. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 15 ± 2 times Earth's. Due to its closer orbit to its star, it is a super-Venus or, if it has a volatile composition, a hot Neptune, with an estimated equilibrium temperature of 510 K, too hot to sustain life on its surface.

    Kepler-61b is a super-Earth exoplanet orbiting within parts of the habitable zone of the K-type main-sequence star Kepler-61. It is located about 1,100 light-years from Earth in the constellation of Cygnus. It was discovered in 2013 using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured, by NASA's Kepler spacecraft.

    <span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

    Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

    <span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

    Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

    Kepler-432b (also known by its Kepler Object of Interest designation KOI-1299.01) is a hot super-Jupiter (or "warm" super-Jupiter) exoplanet orbiting the giant star Kepler-432 A, the innermost of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,830 light-years (870 parsecs, or nearly 2.684×1016 km) from Earth in the constellation Cygnus. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">K2-3d</span> Mini-Neptune orbiting K2-3

    K2-3d, also known as EPIC 201367065 d, is a confirmed exoplanet of probable mini-Neptune type orbiting the red dwarf star K2-3, and the outermost of three such planets discovered in the system. It is located 143 light-years away from Earth in the constellation of Leo. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It was the first planet in the Kepler "Second Light" mission to receive the letter "d" designation for a planet. Its discovery was announced in January 2015.

    Kepler-419c is a super-Jupiter exoplanet orbiting within the habitable zone of the star Kepler-419, the outermost of two such planets discovered by NASA's Kepler spacecraft. It is located about 3,400 light-years from Earth in the constellation Cygnus. The exoplanet was found by using the transit timing variation method, in which the variations of transit data from an exoplanet are studied to reveal a more distant companion.

    <span class="mw-page-title-main">Kepler-1229b</span> Super-Earth orbiting Kepler-1229

    Kepler-1229b is a confirmed super-Earth exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf Kepler-1229, located about 870 light years from Earth in the constellation of Cygnus. It was discovered in 2016 by the Kepler space telescope. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">K2-33b</span> Young Super-Neptune orbiting K2-33

    K2-33b is a very young super-Neptune exoplanet, orbiting the pre-main-sequence star K2-33. It was discovered by NASA's Kepler spacecraft on its "Second Light" mission. It is located about 456 light-years away from Earth in the constellation of Scorpius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">K2-72e</span> Goldilocks terrestrial exoplanet orbiting K2-72

    K2-72e (also known by its EPIC designation EPIC 206209135.04), is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star K2-72, the outermost of four such planets discovered in the system by NASA's Kepler spacecraft on its "Second Light" mission. It is located about 217.1 light-years (66.56 parsecs, or nearly 2.0538×1015 km) away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    Kepler-419b is a hot Jupiter exoplanet orbiting the star Kepler-419, the outermost of two such planets discovered by NASA's Kepler spacecraft. It is located about 3,400 light-years (1040 parsecs from Earth in the constellation Cygnus.

    <span class="mw-page-title-main">Kepler-90i</span> Super-Earth orbiting Kepler-90

    Kepler-90i (also known by its Kepler Object of Interest designation KOI-351.08) is a super-Earth exoplanet with a radius 1.32 times that of Earth, orbiting the early G-type main sequence star Kepler-90 every 14.45 days, discovered by NASA's Kepler spacecraft. It is located about 2,840 light-years (870 parsecs, or nearly 2.4078×1016 km) from Earth in the constellation Draco. The exoplanet is the eighth in the star's multiplanetary system. As of December 2017, Kepler-90 is the star hosting the most exoplanets found. Kepler-90i was found with the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured, and by a newly utilized computer tool, deep learning, a class of machine learning algorithms.

    Kepler-277b is the second most massive and third-largest rocky planet ever discovered, with a mass close to that of Saturn. Discovered in 2014 by the Kepler Space Telescope, Kepler-277b is a sub-Neptune sized exoplanet with a very high mass and density for an object of its radius, suggesting a composition made mainly of rock and iron. Along with its sister planet, Kepler-277c, the planet's mass was determined using transit-timing variations (TTVs).

    Kepler-277c is the third most massive and second-largest rocky planet ever discovered, with a mass about 64 times that of Earth. Discovered in 2014 by the Kepler Space Telescope, Kepler-277c is a Neptune-sized exoplanet with a very high mass and density for an object of its radius, suggesting a composition made mainly of rock with some amounts of water. Along with its sister planet, Kepler-277b, the planet's mass was determined using transit-timing variations (TTVs).

    References

    1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–90. arXiv: 1304.7387 . Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. hdl:1721.1/89668. PMID   23599262. S2CID   21029755.
    2. Angus, Ruth (31 July 2014). "Most 1.6 Earth-radius planets are not rocky". Astrobites.
    3. Fraser Cain (16 September 2008). "How Old is the Sun?". Universe Today . Retrieved 19 February 2011.
    4. Fraser Cain (15 September 2008). "Temperature of the Sun". Universe Today. Retrieved 19 February 2011.