Microfiber

Last updated

Microfiber cloth suitable for cleaning sensitive surfaces Microfibre cloth.jpg
Microfiber cloth suitable for cleaning sensitive surfaces

Microfibre (microfiber in American English) is synthetic fibre finer than one denier or decitex/thread, having a diameter of less than ten micrometers.

Contents

The most common types of microfiber are made variously of polyesters; polyamides (e.g., nylon, Kevlar, Nomex); and combinations of polyester, polyamide, and polypropylene. Microfiber is used to make mats, knits, and weaves, for apparel, upholstery, industrial filters, and cleaning products. The shape, size, and combinations of synthetic fibers are chosen for specific characteristics, including softness, toughness, absorption, water repellence, electrostatics, and filtering ability.

History

Production of ultra-fine fibers (finer than 0.7 denier) dates to the late 1950s, using melt-blown spinning and flash spinning techniques. Initially, only fine staples of random length could be manufactured and very few applications were found. [1] Then came experiments to produce ultra-fine fibers of a continuous filament type: the most promising experiments were made in Japan in the 1960s, by Miyoshi Okamoto, a scientist at Toray Industries. [2] Okamoto's discoveries and those of Toyohiko Hikota led to many industrial applications, including Ultrasuede, one of the first successful synthetic microfibers, which entered the market in the 1970s. Microfiber's use in the textile industry then expanded. Microfibers were first publicized in the early 1990s, in Sweden, and saw success as a product in Europe over the course of the decade.

Apparel

Clothing

Microfiber fabrics are man-made and frequently used for athletic wear, such as cycling jerseys, because the microfiber material wicks moisture (perspiration) away from the body; subsequent evaporation cools the wearer.

Microfiber can be used to make tough, very soft fabric for clothing, often used in skirts, jackets, bathrobes, and swimwear. Microfiber can be made into Ultrasuede, a synthetic imitation of suede leather, which is cheaper and easier to clean and sew than natural suede leather.

Accessories

Microfiber is used to make many accessories that traditionally have been made from leather: wallets, handbags, backpacks, book covers, shoes, cell phone cases, and coin purses. Microfiber fabric is lightweight, durable, and somewhat water repellent, so it makes a good substitute.

Another advantage of microfiber fabric (compared to leather) is that it can be coated with various finishes and can be treated with antibacterial chemicals. Fabric can also be printed with various designs, embroidered with colored thread, and heat-embossed.

Other uses

Textiles for cleaning

Microfiber cloth for cleaning screens and lenses Microfiber shammy 2.jpg
Microfiber cloth for cleaning screens and lenses
Microfiber mop with Velcro back for fastening on handle Mop for wet use, looped microfiber, velcro back, 60 cm.jpg
Microfiber mop with Velcro back for fastening on handle

In cleaning products, microfiber can be 100% polyester, or a blend of polyester and polyamide (nylon). It can be either a woven product or a non woven product, the latter most often used in limited use or disposable cloths. In the highest-quality fabrics for cleaning applications, the fiber is split during the manufacturing process to produce multi-stranded fibers. A cross section of the split microfiber fabric under high magnification would look like an asterisk.[ citation needed ]

The split fibers and the size of the individual filaments make the cloths more effective than other fabrics for cleaning purposes. The structure traps and retains the dirt and also absorbs liquids. Unlike cotton, microfiber leaves no lint, the exception being some micro suede blends, where the surface is mechanically processed to produce a soft plush feel.[ citation needed ]

For microfiber to be most effective as a cleaning product, especially for water-soluble soils and waxes, it should be a split microfiber. Non-split microfiber is little more than a very soft cloth. The main exception is for cloths used for facial cleansing and for the removal of skin oils (sebum), sunscreens, and mosquito repellents from optical surfaces such as cameras, phones and eyeglasses wherein higher-end proprietary woven, 100% polyester cloths using 2  μm filaments, will absorb these types of oils without smearing.[ citation needed ]

Microfiber that is used in non-sports-related clothing, furniture, and other applications is not split because it is not designed to be absorbent, just soft. When buying, microfiber may not be labeled to designate whether it is split. One method to determine the type of microfiber is to run the cloth over the palm of the hand. A split microfiber will cling to imperfections of the skin and can be either heard or felt as it does. Alternatively, a small amount of water can be poured onto a hard, flat surface and pushed with the microfiber. If the water is pushed rather than absorbed, it is not split microfiber.[ citation needed ]

Microfiber can be electrostatically charged for special purposes like filtration. [3] [ better source needed ]

Cloths and mops

Microfiber products used for consumer cleaning are generally constructed from split conjugated fibers of polyester and polyamide. Microfiber used for commercial cleaning products also includes many products constructed of 100% polyester. Microfiber products are able to absorb oils especially well and are not hard enough to scratch even paintwork unless they have retained grit or hard particles from previous use. Due to hydrogen bonding, microfiber cloth containing polyamide absorbs and holds more water than other types of fibres.

Microfiber is widely used by car detailers to handle tasks such as removing wax from paintwork, quick detailing, interior cleaning, glass cleaning, and drying. Because of their fine fibers which leave no lint or dust, microfiber towels are used by car detailers and enthusiasts in a similar manner to a chamois leather.

Microfiber is used in many professional cleaning applications, for example in mops and cleaning cloths. Although microfiber mops cost more than non-microfiber mops, they may be more economical because they last longer and require less effort to use. [4] [5]

Microfiber textiles designed for cleaning clean on a microscopic scale. According to tests, using microfiber materials to clean a surface reduces bacteria by 99%, whereas a conventional cleaning material reduces bacteria by only 33%. [6] Microfiber cleaning tools also absorb fat and grease and their electrostatic properties allow them to attract dust strongly.

Microfiber cloths are also used to clean photographic lenses as they absorb oily matter without being abrasive or leaving a residue, and are sold by major manufacturers such as Sinar, Nikon and Canon. Small microfiber cleaning cloths are commonly sold for cleaning computer screens and eyeglasses.

Cloth for cleaning glasses Brillenputztucher-trocken.jpg
Cloth for cleaning glasses

Microfiber is unsuitable for some cleaning applications as it accumulates dust, debris, and particles. Sensitive surfaces (such as all high-tech coated surfaces e.g. CRT, LCD and plasma screens) can easily be damaged by a microfiber cloth if it has picked up grit or other abrasive particles during use. One way to minimize the risk of damage to flat surfaces is to use a flat, non-rugged microfiber cloth, as these tend to be less prone to retaining grit.

Rags made of microfiber must only be washed with regular laundry detergent, not oily, self-softening, soap-based detergents. Fabric softener must not be used; [7] the oils and cationic surfactants in the softener and self-softening detergents will clog up the fibers and make them less absorbent until the oils are washed out. Hot temperatures may also cause microfiber cloth to melt or become wrinkled. [7]

Insulation

Microfiber materials such as PrimaLoft are used for thermal insulation as a replacement for down feather insulation in sleeping bags and outdoor equipment, because of their better retention of heat when damp or wet. Microfiber is also used for water insulation in automotive car covers. Depending on the technology the fiber manufacturer is using, such material may contain from 2 up to 5 thin layers, merged. Such combination ensures not only high absorption factor, but also breathability of the material, which prevents the greenhouse effect.

Basketballs

With microfiber-shelled basketballs already used by FIBA, the NBA introduced a microfiber ball for the 2006–07 season. [8] The ball, which is manufactured by Spalding, does not require a "break-in" period of use as leather balls do and has the ability to absorb water and oils, meaning that sweat from players touching the ball is better absorbed, making the ball less slippery. [8] Over the course of the season, the league received many complaints from players who found that the ball bounced differently from leather balls, and that it left cuts on their hands. [9] On January 1, 2007, the league scrapped the use of all microfiber balls and returned to leather basketballs. [9]

Other

Microfibers used in tablecloths, furniture, and car interiors are designed to repel wetting and consequently are difficult to stain. In furniture, microfiber is a close alternative to leather due to the simple upkeep of the qualities of the material. Easy to wipe off liquids and better suited for individuals with pets. Microfiber tablecloths will bead liquids until they are removed and are sometimes advertised showing red wine on a white tablecloth that wipes clean with a paper towel. This and the ability to mimic suede economically are common selling points for microfiber upholstery fabrics (e.g., for couches).[ citation needed ]

Microfibers are used in towels especially those to be used at swimming pools as even a small towel dries the body quickly. They dry quickly and are less prone than cotton towels to become stale if not dried immediately. Microfiber towels need to be soaked in water and pressed before use, as they would otherwise repel water as microfiber tablecloths do.[ citation needed ]

Microfiber is also used for other applications such as making menstrual pads, cloth diaper inserts, body scrubbers, face mitts, whiteboard cleaners, and various goods that need to absorb water and/or attract small particles.

In the medical world, the properties of microfibers are used in the coating of certain fabric sheets used to strengthen the original material. [10]

Environmental and safety issues

Microfiber textiles tend to be flammable if manufactured from hydrocarbons (polyester) or carbohydrates (cellulose) and emit toxic gases when burning, more so if aromatic (PET, PS, ABS) or treated with halogenated flame retardants and azo dyes. [11] Their polyester and nylon stock are made from petrochemicals, which are not a renewable resource and are not biodegradable.

For most cleaning applications they are designed for repeated use rather than being discarded after use. [12] An exception to this is the precise cleaning of optical components where a wet cloth is drawn once across the object and must not be used again as the debris collected are now embedded in the cloth and may scratch the optical surface.

Microfiber products also enter the oceanic water supply and food chain similarly to other microplastics. [13] Synthetic clothing made of microfibers that are washed release materials and travel to local wastewater treatment plants, contributing to plastic pollution in water. A study by the clothing brand Patagonia and University of California, Santa Barbara, found that when synthetic jackets made of microfibers are washed, on average 1.7 grams (0.060 oz) of microfibers are released from the washing machine. These microfibers then travel to local wastewater treatment plants, where up to 40% of them enter into rivers, lakes, and oceans where they contribute to the overall plastic pollution. [14] [15] Microfibers account for 85% of man-made debris found on shorelines worldwide. [16] [13] Fibers retained in wastewater treatment sludge (biosolids) that are land-applied can persist in soils. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance made of long, thin filaments

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

<span class="mw-page-title-main">Towel</span> Absorbent fabric or paper, used for drying or wiping a surface

A towel is a piece of absorbent cloth or paper used for drying or wiping a surface. Towels draw moisture through direct contact.

<span class="mw-page-title-main">Mop</span> Cleaning tool made up of coarse strings

A mop is a mass or bundle of coarse strings or yarn, etc., or a piece of cloth, sponge or other absorbent material, attached to a pole or stick. It is used to soak up liquid, for cleaning floors and other surfaces, to mop up dust, or for other cleaning purposes.

<span class="mw-page-title-main">Bathrobe</span> Loose, informal garment worn after bathing or at home

A bathrobe, also known as a housecoat or a dressing gown, is a loose-fitting outer garment worn by people, often after washing the body or around a pool. A bathrobe is considered to be very informal clothing, and is not worn with everyday clothes.

<span class="mw-page-title-main">Chamois leather</span> Type of porous leather

Chamois leather is a type of porous leather, traditionally the skin of the chamois, a type of European mountain goat, but today made almost exclusively from the flesh split of a sheepskin.

<span class="mw-page-title-main">Acrylic fiber</span> Synthetic fiber made from polymer

Acrylic fibers are synthetic fibers made from a polymer (polyacrylonitrile) with an average molecular weight of ~100,000, about 1900 monomer units. For a fiber to be called "acrylic" in the US, the polymer must contain at least 85% acrylonitrile monomer. Typical comonomers are vinyl acetate or methyl acrylate. DuPont created the first acrylic fibers in 1941 and trademarked them under the name Orlon. It was first developed in the mid-1940s but was not produced in large quantities until the 1950s. Strong and warm, acrylic fiber is often used for sweaters and tracksuits and as linings for boots and gloves, as well as in furnishing fabrics and carpets. It is manufactured as a filament, then cut into short staple lengths similar to wool hairs, and spun into yarn.

<span class="mw-page-title-main">Artificial leather</span> Material that imitates leather

Artificial leather, also called synthetic leather, is a material intended to substitute for leather in upholstery, clothing, footwear, and other uses where a leather-like finish is desired but the actual material is cost prohibitive or unsuitable, or for ethical concerns. Artificial leather is known under many names, including leatherette, imitation leather, faux leather, vegan leather, PU leather (polyurethane), and pleather.

<span class="mw-page-title-main">Laundry detergent</span> Type of detergent used for cleaning laundry

Laundry detergent is a type of detergent used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder and liquid form.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Terrycloth</span> Absorbent textile with a looped pile

Terrycloth, terry cloth, terry cotton, terry toweling, terry, terry towel, Turkish toweling (formerly), or simply toweling is a fabric woven with many protruding loops of thread which can absorb large amounts of water. It can be manufactured by weaving or knitting. Terrycloth is woven on special looms that have two beams of longitudinal warp through which the filler or weft is fired laterally.

<span class="mw-page-title-main">Polar fleece</span> Insulating knitted polyester napped or pile fabric

Polar fleece is a soft fabric made from polyester that is napped and insulating.

<span class="mw-page-title-main">Alcantara (material)</span> Suede-like synthetic textile

Alcantara is the brand name of a synthetic textile with a soft, suede-like microfibre pile, noted for its durability. Alcantara was developed in the 1970s by Miyoshi Okamoto and initially manufactured by the Italian company Alcantara. The term has an Arabic root and means "the bridge".

The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, which turns yarn into cloth. The machine used for weaving is the loom. For decoration, the process of colouring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.

<span class="mw-page-title-main">Ultrasuede</span> Type of synthetic ultra-microfiber fabric

Ultrasuede is the trade name for a synthetic ultra-microfiber fabric invented in 1970 by Dr. Miyoshi Okamoto, a scientist working for Toray Industries. In Japan, it is sold under the brand name Ecsaine. It is often described as an artificial substitute for suede leather. The fabric is multifunctional: it is used in fashion, interior decorating, automobile and other vehicle upholstery, and industrial applications, such as protective fabric for electronic equipment. It is also a very popular fabric in the manufacture of footbags and juggling balls. Other manufacturers such as Sensuede and Majilite also produce similar product lines of synthetic microfiber suede.

<span class="mw-page-title-main">Finishing (textiles)</span> Manufacturing process

In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.

Many materials have been used to make garments throughout history. Grasses, furs and much more complex and exotic materials have been used. Cultures like the Arctic Circle, make their wardrobes out of prepared and decorated furs and skins.[1] Different cultures have added cloth to leather and skins as a way to replace real leather. A wide range of fibers, including natural, cellulose, and synthetic fibers, can be used to weave or knit cloth. From natural fibers like cotton and silk to synthetic ones like polyester and nylon, most certainly reflects culture.

Wet Processing Engineering is one of the major streams in Textile Engineering or Textile manufacturing which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

<span class="mw-page-title-main">Environmental impact of fashion</span>

The fashion industry, particularly manufacture and use of apparel and footwear, is a significant driver of greenhouse gas emissions and plastic pollution. The rapid growth of fast fashion has led to around 80 billion items of clothing being consumed annually, with about 85% of clothes consumed in United States being sent to landfill.

<span class="mw-page-title-main">Fabric treatment</span>

Fabric treatments are processes that make fabric softer, or water resistant, or enhance dye penetration after they are woven. Fabric treatments get applied when the textile itself cannot add other properties. Treatments include, scrim, foam lamination, fabric protector or stain repellent, anti microbial and flame retardant.

Pile Cloth Media Filtration is a mechanical process for the separation of organic and inorganic solids from liquids. It belongs to the processes of surface filtration and cake filtration where, in addition to the sieve effect, real filtration effects occur over the depth of the pile layer. Pile Cloth Media Filtration represents a branch of cloth filtration processes and is used for water and wastewater treatment in medium and large scale. In Pile Cloth Media Filtration, three-dimensional textile fabrics are used as filter media. During the filter cleaning of the pile layer the filtration process continues and is not interrupted.

References

  1. Nakajima T, Kajiwara K, McIntyre J E, 1994. Advanced Fiber Spinning Technology Archived 2020-01-26 at the Wayback Machine . Woodhead Publishing, pp. 187–188
  2. Kanigel, Robert, 2007. Faux Real: Genuine Leather and 200 Years of Inspired Fakes Archived 2018-10-11 at the Wayback Machine . Joseph Henry Press, pp. 186–192
  3. "SYNTHETIC SPLIT MICROFIBER TECHNOLOGY FOR FILTRATION " by Jeff Dugan, Vice President Research and Development Fiber Innovation Technologies and Ed Homonoff President Edward C. Homonoff & Associates, LLC
  4. UC Davis Health System: Newroom. UC Davis Pioneers Use of Microfiber Mops in Hospitals: Mops reduce injuries, kill more germs and reduce costs. Archived 2010-07-06 at the Wayback Machine June 23, 2006.
  5. Sustainable Hospitals Project, University of Massachusetts Lowell. 10 Reasons to Use Microfiber Mopping. Archived 2007-04-10 at the Wayback Machine
  6. UC Davis Health System: Newroom — UC Davis Pioneers Use Of Microfiber Mops In Hospitals. Ucdmc.ucdavis.edu. Retrieved on 2010-12-01.
  7. 1 2 "Discover Microfiber Clothes and Linens and How to Use and Wash Them". The Spruce.
  8. 1 2 NBA Introduces New Game Ball Archived 2012-03-17 at the Wayback Machine . NBA.com, June 28, 2006.
  9. 1 2 Josh Hart, NBA to Take Microfiber Basketball and Go Home Archived 2008-12-12 at the Wayback Machine . National Ledger , December 12, 2006.
  10. Mukhopadhyay, Samrat (September 2002). "Microfibres—An overview". Indian Journal of Fibre and Textile Research. 27: 312. ISSN   0975-1025 . Retrieved October 20, 2023 via NIScPR.
  11. Braun, Emil; Levin, Barbara C. (1986). "Polyesters: A Review of the Literature on Products of Combustion and Toxicity" (PDF). Fire and Materials. 10 (3–4): 107–123. doi:10.1002/fam.810100304. Archived (PDF) from the original on May 30, 2010. Retrieved December 2, 2012.
  12. Barbara Flanagan, The Case of the Missing Microfiber. I.D., April 22, 2008.
  13. 1 2 Browne, Mark Anthony; Crump, Phillip; Niven, Stewart J.; Teuten, Emma; Tonkin, Andrew; Galloway, Tamara; Thompson, Richard (2011). "Accumulation of microplastic on shorelines worldwide: Sources and sinks". Environmental Science & Technology. 45 (21): 9175–9179. doi:10.1021/es201811s. PMID   21894925. S2CID   19178027.
  14. "Project Findings". Microfiber Pollution & the apparel industry. Archived from the original on March 26, 2017. Retrieved March 25, 2017.
  15. O'Connor, Mary Catherine (June 20, 2016). "Patagonia's New Study Finds Fleece Jackets Are a Serious Pollutant". Outside Online. Archived from the original on March 26, 2017. Retrieved March 25, 2017.
  16. Paddison, Laura (September 26, 2016). "Single clothes wash may release 700,000 microplastic fibres, study finds". The Guardian. ISSN   0261-3077. Archived from the original on February 10, 2020. Retrieved June 15, 2017.
  17. Zubris, Kimberly Ann V.; Richards, Brian K. (November 2005). "Synthetic fibers as an indicator of land application of sludge". Environmental Pollution. 138 (2): 201–211. doi:10.1016/j.envpol.2005.04.013. PMID   15967553.