Nomex

Last updated
A firefighter in Toronto, Canada wears a Nomex hood in 2007. TFS Nomex Hood.JPG
A firefighter in Toronto, Canada wears a Nomex hood in 2007.

Nomex is a flame-resistant meta-aramid material developed in the early 1960s by DuPont and first marketed in 1967. [1]

Contents

Properties

Nomex and related aramid polymers are related to nylon, but have aromatic backbones, and hence are more rigid and more durable. Nomex is an example of a meta variant of the aramids (Kevlar is a para aramid). Unlike Kevlar, Nomex strands cannot align during filament polymerization and have less strength: its ultimate tensile strength is 340 MPa (49,000 psi). [2] However, it has excellent thermal, chemical, and radiation resistance for a polymer material. It can withstand temperatures of up to 370 °C (700 °F). [3]

Production

Nomex is produced by condensation reaction from the monomers m-phenylenediamine and isophthaloyl chloride. [1]

It is sold in both fiber and sheet forms and is used as a fabric where resistance from heat and flame is required. Nomex sheet is actually a calendered paper and made in a similar fashion. Nomex Type 410 paper was the first Nomex paper developed and one of the higher volume grades made, mostly for electrical insulation purposes.

Wilfred Sweeny (1926–2011), the DuPont scientist responsible for discoveries leading to Nomex, earned a DuPont Lavoisier Medal [4] in 2002 partly for this work.

Applications

Nomex Paper is used in electrical laminates such as circuit boards and transformer cores as well as fireproof honeycomb structures where it is saturated with a phenolic resin. Honeycomb structures such as these, as well as mylar-Nomex laminates, are used extensively in aircraft construction. Firefighting, military aviation, and vehicle racing industries use Nomex to create clothing and equipment that can withstand intense heat.

A Nomex hood is a common piece of racing and firefighting equipment. It is placed on the head on top of a firefighter's face mask. The hood protects the portions of the head not covered by the helmet and face mask from the intense heat of the fire.

Wildland firefighters wear Nomex shirts and trousers as part of their personal protective equipment during wildfire suppression activities.

Racing car drivers wear driving suits constructed of Nomex and or other fire retardant materials, along with Nomex gloves, long underwear, balaclavas, socks, helmet lining and shoes, to protect them in the event of a fire.

Military pilots and aircrew wear flight suits made of over 92 percent Nomex to protect them from cockpit fires. It is also worn as sailors' anti-flash gear. Troops riding in ground vehicles often wear Nomex for fire protection. Kevlar thread is often used to hold the fabric together at seams.

Military tank drivers also typically use Nomex hoods as protection against fire. [5]

In the U.S. space program, Nomex has been used for the Thermal Micrometeoroid Garment on the Extravehicular Mobility Unit (in conjunction with Kevlar and Gore-Tex) and ACES pressure suit, both for fire and extreme environment (water immersion to near vacuum) protection, and as thermal blankets on the payload bay doors, fuselage, and upper wing surfaces of the Space Shuttle Orbiter. It has also been used for the airbags for the Mars Pathfinder and Mars Exploration Rover missions [ citation needed ], the Galileo atmospheric probe, the Cassini-Huygens Titan probe, as an external covering on the AERCam Sprint, and is planned to be incorporated into NASA's upcoming Crew Exploration Vehicle.

Nomex has been used as an acoustic material in Troy, NY, at Rensselaer Polytechnic Institute's Experimental Media and Performing Arts Center (EMPAC) main concert hall. A ceiling canopy of Nomex reflects high and mid frequency sound, providing reverberation, while letting lower frequency sound partially pass through the canopy. [6] According to RPI President Shirley Ann Jackson, EMPAC is the first venue in the world to use Nomex as an architectural material for acoustic reasons.[ citation needed ]

Nomex (like Kevlar) is also used in the production of loudspeaker drivers.

Honeycomb-structured Nomex paper is used as a spacer between layers of lead in the ATLAS Liquid Argon Calorimeter, [7] and as a laminate core for hull and deck construction in custom boats such as Stiletto Catamarans like the Stiletto 27. [8]

Nomex is used in industrial applications as a filter in exhaust filtration systems, typically a baghouse, that deal with hot gas emissions found in asphalt plants, cement plants, steel smelting facilities, and non-ferrous metal production facilities. [9]

Nomex is used in some classical guitar tops in order to create a 'composite' soundboard. [10] When Nomex is laminated between 2 spruce or cedar 'skins', a rigid and lightweight plate is produced, which can improve the efficiency of the soundboard. While the 'laminated' technique was created by Matthias Dammann, the use of Nomex within was first employed by luthier Gernot Wagner. [10]

History

The deaths in fiery crashes of race car drivers Fireball Roberts at Charlotte, and Eddie Sachs and Dave MacDonald at Indianapolis in 1964, led to the use of flame-resistant fabrics such as Nomex. [11] In early 1966 Competition Press and Autoweek reported: "During the past season, experimental driving suits were worn by Walt Hansgen, Masten Gregory, Marvin Panch and Group 44's Bob Tullius; these four representing a fairly good cross section in the sport. The goal was to get use-test information on the comfort and laundering characteristics of Nomex. The Chrysler-Plymouth team at the recent Motor Trend 500 at Riverside also wore these suits." [12]

See also

Related Research Articles

<span class="mw-page-title-main">Kevlar</span> Heat-resistant and strong aromatic polyamide fiber

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance made of long, thin filaments

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

<span class="mw-page-title-main">Bulletproof vest</span> Form of body armour that protects the torso from some projectiles

A bulletproof vest, also known as a ballistic vest or a bullet-resistant vest, is an item of body armour that helps absorb the impact and reduce or stop penetration to the torso by firearm-fired projectiles and fragmentation from explosions. The vest may come in a soft form, as worn by many police officers, prison officers, security guards, and some private citizens, used to protect against stabbing attacks or light projectiles, or hard form, using metallic or para-aramid components. Soldiers and police tactical units wear hard armour, either in conjunction with soft armour or alone, to protect against rifle ammunition or fragmentation.

Synthetic fibers or synthetic fibres are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms, such as plants or fur from animals. They are the result of extensive research by scientists to replicate naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units"..

Aramid fibers, short for aromatic polyamide, are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in marine cordage, marine hull reinforcement, as an asbestos substitute, and in various lightweight consumer items ranging from phone cases to tennis rackets.

Twaron is a para-aramid. It is a heat-resistant and strong synthetic fibre developed in the early 1970s by the Dutch company Akzo Nobel's division Enka BV, later Akzo Industrial Fibers. The research name of the para-aramid fibre was originally Fiber X, but it was soon called Arenka. Although the Dutch para-aramid fiber was developed only a little later than DuPont's Kevlar, the introduction of Twaron as a commercial product came much later than Kevlar due to financial problems at the Akzo company in the 1970s.

<span class="mw-page-title-main">Stephanie Kwolek</span> American chemist who invented Kevlar

Stephanie Louise Kwolek was a Polish-American chemist who is known for inventing Kevlar. Her career at the DuPont company spanned more than 40 years. She discovered the first of a family of synthetic fibers of exceptional strength and stiffness: poly-paraphenylene terephthalamide.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

Polybenzimidazole (PBI, short for poly[2,2’-(m-phenylen)-5,5’-bisbenzimidazole]) fiber is a synthetic fiber with a very high decomposition temperature. It does not exhibit a melting point, it has exceptional thermal and chemical stability, and it does not readily ignite. It was first discovered by American polymer chemist Carl Shipp Marvel in the pursuit of new materials with superior stability, retention of stiffness, and toughness at elevated temperature. Due to its high stability, polybenzimidazole is used to fabricate high-performance protective apparel such as firefighter's gear, astronaut space suits, high temperature protective gloves, welders’ apparel and aircraft wall fabrics. Polybenzimidazole has been applied as a membrane in fuel cells.

<span class="mw-page-title-main">Gold Flex</span>

Gold Flex is a non-woven fabric manufactured by Honeywell from Kevlar, and is often used in ballistic vests and body armor. Gold Flex is lighter than woven Kevlar, Twaron and other Ballistic material. Gold Flex is a laminated material consisting of cross-laid, non-woven fibers in a resin matrix. The fibers are laid straight and not in a woven fabric configuration. When an object strikes this material, a "web" of its clusters absorb the impact and minimizes penetration.

<span class="mw-page-title-main">Sailcloth</span> Strong fabric of the type used to make ships sails

Sailcloth is cloth used to make sails. It can be made of a variety of materials, including natural fibers such as flax, hemp, or cotton in various forms of sail canvas, and synthetic fibers such as nylon, polyester, aramids, and carbon fibers in various woven, spun, and molded textiles.

<span class="mw-page-title-main">Beta cloth</span> Fireproof textile

Beta cloth is a type of fireproof PTFE impregnated silica fiber cloth used in the manufacture of Apollo/Skylab A7L space suits, the Apollo Thermal Micrometeoroid Garment, the McDivitt Purse, and in other specialized applications.

<span class="mw-page-title-main">DuPont Experimental Station</span> Research and development facility of DuPont

The DuPont Experimental Station is the largest research and development facility of DuPont, located on the banks of the Brandywine Creek in Wilmington, Delaware

<span class="mw-page-title-main">Thermal Micrometeoroid Garment</span> Outer, protective layer of a spacesuit

An (Integrated) Thermal Micrometeoroid Garment is the outer layer of a space suit. The TMG has three functions: to insulate the suit occupant and prevent heat loss, to shield the occupant from harmful solar radiation, and to protect the astronaut from micrometeoroids and other orbital debris, which could puncture the suit and depressurize it.

Technora is an aramid that is useful for a variety of applications that require high strength or chemical resistance. It is a brand name of the company Teijin Aramid.

<span class="mw-page-title-main">M5 fiber</span>

M5 fiber is a high-strength synthetic fiber first developed by the Dutch chemical firm AkzoNobel. It is produced in the United States by the Magellan Systems International, which became a division of DuPont.

Kevlar KM2 is a synthetic para-aramid fibre produced by DuPont. The fiber is an evolution of the original Kevlar fibre. The following quotes summarise Kevlar KM2's properties.

Armor has been used in the military for a long period of time during the course of history, but is becoming more frequently seen in the public sector as time passes. There are many different forms and ways that armor is being commercially used throughout the world today. The most popular and well-known uses are body and vehicle armor. There are other commercial uses including aircraft armor and armored glass.

<span class="mw-page-title-main">Racing suit</span> Clothing worn in auto racing

A racing suit or racing overalls, often referred to as a fire suit due to its fire retardant properties, is clothing such as overalls worn in various forms of auto racing by racing drivers, crew members who work on the vehicles during races, track safety workers or marshals, and in some series commentators at the event.

<span class="mw-page-title-main">Textile performance</span> Fitness for purpose of textiles

Textile performance, also known as fitness for purpose, is a textile's capacity to withstand various conditions, environments, and hazards, qualifying it for particular uses. The performance of textile products influences their appearance, comfort, durability, and protection. Different textile applications require a different set of performance parameters. As a result, the specifications determine the level of performance of a textile product. Textile testing certifies the product's conformity to buying specification. It describes product manufactured for non-aesthetic purposes, where fitness for purpose is the primary criterion. Engineering of high-performance fabrics presents a unique set of challenges.

References

  1. 1 2 Mera, Hiroshi; Takata, Tadahiko (2000). "High-Performance Fibers". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_001. ISBN   978-3-527-30673-2.
  2. "DuPont™ Nomex® N301 Nomex® Aramid Staple Fiber".
  3. Sabir, Tasneem (2018). "Fibers used for high-performance apparel". High-Performance Apparel. pp. 7–32. doi:10.1016/B978-0-08-100904-8.00002-X. ISBN   978-0-08-100904-8.
  4. "Nomex Scientist Earns Lavoisier Medal". FiberSource. June 20, 2002. Archived from the original on January 23, 2013. Retrieved 2008-08-08.
  5. Intense Battles Call for Intense Flash Fire Protection
  6. Immersive Art: Surrounded by Science, Art Flourishes Archived 2011-07-10 at the Wayback Machine by Michael Eddy, Stage Directions, February 1, 2009
  7. Hervas, L. (2005). "The ATLAS Liquid Argon Electromagnetic Calorimeter: Construction, Commissioning and Selected Test Beam Results". IEEE Transactions on Instrumentation and Measurement . 54 (4): 1505–1512. doi:10.1109/TIM.2005.851233. S2CID   26075945.
  8. Boat Building: Process and Advances, How Core Materials Make Better Boats by Eric W. Sponberg, Naval Architect
  9. "Hot Gas Filtration".
  10. 1 2 Kamen, Chris. "The origin and development of the double top guitar". Classic Guitars International. Retrieved 2022-12-19.
  11. Competition Press, June 27-July 10, 1964, Page 2.
  12. Competition Press and Autoweek, April 9, 1966, Page 17.