Nidula

Last updated

Nidula
Nidula candida.jpg
Nidula candida
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Nidula

V.S.White (1902)
Type species
Nidula candida
(Peck) V.S.White (1902)
Species

N. baltica
N. candida
N. emodensis
N. macrocarpa
N. niveotomentosa
N. shingbaensis

Contents

Nidula is a genus of fungi in the family Agaricaceae. Their fruit bodies resemble tiny egg-filled birds' nests, from which they derive their common name "bird's nest fungi". Originally described in 1902, the genus differs from the related genera Cyathus and Crucibulum by the absence of a cord that attaches the eggs to the inside of the fruit body. The life cycle of this genus allows it to reproduce both sexually, with meiosis, and asexually via spores. Species in this genus produce a number of bioactive compounds, including 4-(p-hydroxyphenyl)-2-butanone, a major component of raspberry flavor and insect attractor used in pesticides.

Taxonomy

The genus Nidula was originally proposed by Violet S. White in her monograph on the North American species of the Nidulariaceae, and included the species N. candida and N. microcarpa. [1] The genus name is derived from the Latin nidula, meaning "little nest". [2] Although originally classified in the family Nidulariaceae, molecular phylogenetics demonstrated that the Nidulariaceae are part of the agaricoid clade, [3] and Nidula was later transferred to the family Agaricaceae. [4]

Description

The fruit bodies (peridia) of species in Nidula are typically between 3–8 mm in diameter, 5–15 mm tall, and cup- or urn-shaped—having almost vertical sides with the lip flared outwards. Depending on the species, the color may range from white, grey, buff, or tawny. [2] The peridia are covered on the external surface with closely matted, shaggy hairs, technically called a tomentum. Immature peridia have a membrane covering the mouth (an epiphragm ), which later ruptures into 4–7 lobes when mature. The "eggs", or peridioles, are numerous, grey-brown or reddish-brown in color, and embedded in a gelatinous matrix when young and fresh. In contrast to other genera of the Nidulariaceae, such as Cyathus or Crucibulum , the peridioles of the Nidula are not attached to the peridia by a cord of mycelia known as a funiculus. Spores are ovoid to elliptical in shape, thick-walled, light brown, and have dimensions of 8–10 by 4–6 μm. [5]

Habitat and distribution

Species in Nidula have been found in North America, the Himalayas, and mountains in Japan. N. niveo-tomentosa has been collected at an elevation of 5,000 feet (1,500 m) on Blue Mountains in Jamaica. [6]

Life cycle

The life cycle of the genus Nidula, which contains both haploid and diploid stages, is typical of taxa in the basidiomycetes that can reproduce both asexually (via vegetative spores), or sexually (with meiosis). Basidiospores produced in the peridioles each contain a single haploid nucleus. After dispersal, the spores germinate and grow into homokaryotic hyphae, with a single nucleus in each compartment. When two homokaryotic hyphae of different mating compatibility groups fuse with one another, they form a dikaryotic mycelia in a process called plasmogamy. Like other members of the Nidulariaceae, species in Nidula have a heterothallic (bifactorial) mating system. [6] After a period of time and under the appropriate environmental conditions, fruit bodies may be formed from the dikaryotic mycelia. These fruit bodies produce peridioles containing the basidia upon which new basidiospores are made. Young basidia contain a pair of haploid sexually compatible nuclei which fuse, and the resulting diploid fusion nucleus undergoes meiosis to produce haploid basidiospores. [7]

Species

There are five extant and one extinct species of Nidula:

Described in 2014 from a fossil found in Baltic amber. [8]
Peridia are 10 to 15 mm tall, grey to dark buff, with a recurved rim at maturity. The peridioles are 1.5–2 mm wide, and light grey-brown, and smooth. The spores are elliptical, with dimensions of 4–6 by 8–10  μm. [9]
Peridia are 5 to 10 mm tall, and white to yellowish in color; the rim is either straight or slightly recurved. Peridioles are 0.5 to 1 mm wide, wrinkled, and colored red-brown. Spores are elliptical or roughly spherical, with dimensions of 6–9 by 5–6 μm. [10]
N. niveo-tomentosa Nidula niveotomentosa.jpg
N. niveo-tomentosa
Peridia are 4–6 mm tall with rims that have a fringe of white hairs. Peridioles are mahogany-brown and 0.5–1 mm wide. Spores have an elliptical or roughly spherical shape, and are 6–9 by 5–6 μm. [10]
Peridia are 4–6 mm tall by 4–5 mm wide at the mouth. The exterior surface is a grey color, the interior smooth and whitish. Peridioles are reddish-brown to black, have minute wrinkles, and dimensions of 0.5–1 mm. The spores are somewhat elliptical, obovate, or pyriform. [9]
Peridia are 6–9 mm tall by 5–7 mm wide at the mouth. Found in India, it differs from other Nidula in having a six-layered peridium. [12]

Bioactive compounds

The Nidula are known to produce a number of bioactive compounds. N. niveo-tomentosa grown in liquid culture makes niduloic acid (3-hydroxy-5-(p-hydroxyphenol)pentanoic acid), 4-(p-hydroxyphenyl)-2-butanol, trans-4-p-hydroxyphenylbut-3-en-2-one, 4-(3',4'-dihydroxyphenyl)-2-butanol, 4-(3',4'-dihydroxyphenyl)-2-butanone, zingerone, 3-(p-hydroxyphenyl)-1,2-propanediol, and 4-(p-hydroxyphenyl)-2-butanone. [13] The latter compound is commonly known as "raspberry ketone", one of the major chemicals contributing to the flavour of raspberries. [14] This chemical is used (in its acetate form) as an insect attractor in the pesticide Cue-lure, [13] structurally related to the sex pheromone that female melon flies (sp. Bactrocera cucurbitae ) use to attract males for mating. [15]

Nidula candida contains the sesquiterpene compounds nidulal and niduloic acid, both of which have weak cytotoxic and antibiotic activities. [16]

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<span class="mw-page-title-main">Basidium</span> Fungal structure

A basidium is a microscopic spore-producing structure found on the hymenophore of reproductive bodies of basidiomycete fungi. These bodies also called tertiary mycelia, which are highly coiled versions of secondary mycelia. The presence of basidia is one of the main characteristic features of the genus. A basidium usually bears four sexual spores called basidiospores. Occasionally the number may be two or even eight. Each reproductive spore is produced at the tip of a narrow prong or horn called a sterigma (pl. sterigmata), and is forcefully expelled at full growth.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with most multicellular eukaryotes such as mammals, where the adults are usually diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

<i>Cyathus striatus</i> Species of fungus

Cyathus striatus, commonly known as the fluted bird's nest, is a common saprobic bird's nest fungus with a widespread distribution throughout temperate regions of the world. This fungus resembles a miniature bird's nest with numerous tiny "eggs"; the eggs, or peridioles, are actually lens-shaped bodies that contain spores. C. striatus can be distinguished from most other bird's nest fungi by its hairy exterior and grooved inner walls. Although most frequently found growing on dead wood in open forests, it also grows on wood chip mulch in urban areas. The fruiting bodies are encountered from summer until early winter. The color and size of this species can vary somewhat, but they are typically less than a centimeter wide and tall, and grey or brown in color. Another common name given to C. striatus, splash cups, alludes to the method of spore dispersal: the sides of the cup are angled such that falling drops of water can dislodge the peridioles and eject them from the cup. The specific epithet is derived from the Latin stria, meaning "with fine ridges or grooves".

<i>Crucibulum</i> Genus of fungi

Crucibulum is a genus in the Nidulariaceae, a family of fungi whose fruiting bodies resemble tiny egg-filled bird's nests. Often called "splash cups", the fruiting bodies are adapted for spore dispersal by using the kinetic energy of falling drops of rain. The "eggs" inside the bird's nests are hard waxy shells containing spores, and tend to stick to whatever nearby herbage they land on, thus increasing the odds of being consumed and dispersed by herbivorous animals. Members of this genus are saprobic, obtaining nutrients from dead organic matter, and are typically found growing on decayed wood and wood debris. The three known Crucibulum species are distinguished from other genera of the Nidulariaceae by their relatively simple funiculus – a cord of hyphae that connects the peridiole to the exterior of the bird's nest.

<i>Nidularia</i> Genus of fungi

Nidularia is a genus of nine species of fungi in the family Agaricaceae. Their fruit bodies resemble tiny egg-filled bird nests. The name comes from the Latin nidus meaning nest. The related genus Mycocalia was segregated from Nidularia in 1961 based on differences in the microscopic structure of the peridium.

Mycocalia is a genus of fungi in the family Nidulariaceae. Basidiocarps are minute and irregularly spherical. Each produces one or more peridioles which contain the spores and are released from the disintegrating fruit bodies at maturity. Species are usually found growing on herbaceous stems and other plant debris. The genus was originally described in 1961 by British mycologist J.T. Palmer and has a north temperate distribution.

<i>Cyathus</i> Genus of fungi in the Nidulariaceae

Cyathus is a genus of fungi in the Nidulariaceae, which is a family collectively known as the bird's nest fungi. They are given this name as they resemble tiny bird's nests filled with "eggs" – structures large enough to have been mistaken in the past for seeds. However, these are now known to be reproductive structures containing spores. The "eggs", or peridioles, are firmly attached to the inner surface of this fruit body by an elastic cord of mycelia known as a funiculus. The 45 species are widely distributed throughout the world and some are found in most countries, although a few exist in only one or two locales. Cyathus stercoreus is considered endangered in a number of European countries. Some species of Cyathus are also known as splash cups, which refers to the fact that falling raindrops can knock the peridioles out of the open-cup fruit body. The internal and external surfaces of this cup may be ridged longitudinally ; this is one example of a taxonomic characteristic that has traditionally served to distinguish between species.

<i>Cyathus olla</i> Species of fungus

Cyathus olla also known as the field bird's nest is a species of saprobic fungus in the genus Cyathus of the family Nidulariaceae. The fruit bodies resemble tiny bird's nests filled with "eggs" – spore-containing structures called peridioles. Like other bird's nest fungi, C. olla relies on the force of falling water to dislodge peridioles from fruiting bodies to eject and disperse their spores. The life cycle of this fungus allows it to reproduce both sexually, with meiosis, and asexually via spores. C. olla is a relatively common fungus, with a worldwide distribution. It is the subject of agricultural research to determine its potential as a means to accelerate the breakdown of crop residue, and reduce the population of plant pathogens. The specific epithet is derived from the Latin word olla, meaning "pot".

<i>Cyathus stercoreus</i> Species of fungus

Cyathus stercoreus, commonly known as the dung-loving bird's nest or the dung bird's nest, is a species of fungus in the genus Cyathus, family Nidulariaceae. Like other species in the Nidulariaceae, the fruiting bodies of C. stercoreus resemble tiny bird's nests filled with eggs. The fruiting bodies are referred to as splash cups, because they are developed to use the force of falling drops of water to dislodge and disperse their spores. The species has a worldwide distribution, and prefers growing on dung, or soil containing dung; the specific epithet is derived from the Latin word stercorarius, meaning "of dung".

<i>Cyathus helenae</i> Species of fungus

Cyathus helenae or Helena's bird's nest is a species of fungus in the genus Cyathus, family Nidulariaceae. Like other members of the Nidulariaceae, C. helenae resembles a tiny bird's nest filled with 'eggs'—spore-containing structures known as peridioles. It was initially described by mycologist Harold Brodie in 1965, who found it growing on mountain scree in Alberta, Canada. C. helenae's life cycle allows it to reproduce both sexually and asexually. One of the smaller species of Cyathus, C. helenae produces a number of chemically unique diterpenoid molecules known as cyathins. The specific epithet of this species was given by Brodie in tribute to his late wife Helen.

<i>Coprinopsis lagopus</i> Species of fungus

Coprinopsis lagopus is a species of fungus in the family Psathyrellaceae. Until 2001, the species was known as Coprinus lagopus; advances in the understanding of phylogenetic relationships between the various coprinoid species led to a major reorganization of that genus. It is a delicate and short-lived fungus, the fruit bodies lasting only a few hours before dissolving into a black ink – a process called deliquescence. The vague resemblance of the young fruit body to the paw of a white rabbit has earned this species the common name harefoot mushroom.

<i>Geastrum quadrifidum</i> Species of fungus in the family Geastraceaea

Geastrum quadrifidum, commonly known as the rayed earthstar or four-footed earthstar, is an inedible species of mushroom belonging to the genus Geastrum, or earthstar fungi. First described scientifically by Christian Hendrik Persoon in 1794, G. quadrifidum is a cosmopolitan—but not common—species of Europe, the Americas, Africa, Asia, and Australasia. The fungus is a saprobe, feeding off decomposing organic matter present in the soil and litter of coniferous forests.

<i>Palaeoagaracites</i> Extinct genus of fungi

Palaeoagaracites is an extinct monotypic genus of gilled fungus in the order Agaricales. It contains the single species Palaeoagaracites antiquus.

<span class="mw-page-title-main">Nidulariaceae</span> Family of fungi

The Nidulariaceae are a family of fungi in the order Agaricales. Commonly known as the bird's nest fungi, their fruiting bodies resemble tiny egg-filled birds' nests. As they are saprobic, feeding on decomposing organic matter, they are often seen growing on decaying wood and in soils enriched with wood chips or bark mulch; they have a widespread distribution in most ecological regions. The five genera within the family, namely, Crucibulum, Cyathus, Mycocalia, Nidula, and Nidularia, are distinguished from each other by differences in morphology and peridiole structure; more recently, phylogenetic analysis and comparison of DNA sequences is guiding new decisions in the taxonomic organization of this family.

<i>Mycena chlorophos</i> Species of agaric fungus in the family Mycenaceae

Mycena chlorophos is a species of agaric fungus in the family Mycenaceae. First described in 1860, the fungus is found in subtropical Asia, including India, Japan, Taiwan, Polynesia, Indonesia, and Sri Lanka, in Australia, and Brazil. Fruit bodies (mushrooms) have pale brownish-grey sticky caps up to 30 mm (1.2 in) in diameter atop stems 6–30 mm (0.2–1.2 in) long and up to a millimeter thick. The mushrooms are bioluminescent and emit a pale green light. Fruiting occurs in forests on fallen woody debris such as dead twigs, branches, and logs. The fungus can be made to grow and fruit in laboratory conditions, and the growth conditions affecting bioluminescence have been investigated.

Nidula shingbaensis is a rare species of bird's nest fungus in the family Agaricaceae. Found in the north district of Sikkim (India), where it grows on small fallen twigs of Bhutan fir, it was described as new to science in 2013. It has a peridium measuring 6–9 mm tall with a mouth diameter of 5–7 mm. The peridium contains up to 40 small "eggs" (peridioles) measuring 0.9–1.3 mm in diameter. The peridioles are filled with broadly ellipsoid to elongated spores that are 6.9–8.3–9.8 by 4.9–5.4–6.1 μm. Measuring 650–720 μm thick, the peridium comprises six distinct tissue layers—a feature that is unique in the genus Nidula.

Retiperidiolia is a genus of fungi in the family Nidulariaceae. Basidiocarps are typically under 10 mm in diameter and irregularly spherical. Each produces a number of peridioles which contain the spores and are released from the disintegrating fruit bodies at maturity. Species are usually found growing on herbaceous stems and other plant debris. The genus has a tropical distribution. Species were previously referred to Mycocalia, but molecular research, based on cladistic analysis of DNA sequences, found that they were not closely related.

References

  1. 1 2 White VS. (1902). "The Nidulariaceae of North America". Bulletin of the Torrey Botanical Club. 29 (5): 251–80. doi:10.2307/2478721. JSTOR   2478721.
  2. 1 2 Brodie, The Bird's Nest Fungi, p. 142.
  3. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EG, Vilgalys R, Hibbett DS (2006). "Major clades of Agaricales: a multilocus phylogenetic overview". Mycologia. 98 (6): 982–95. doi:10.3852/mycologia.98.6.982. PMID   17486974.
  4. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi (10th ed.). Wallingford, UK: CAB International. ISBN   978-0-85199-826-8.
  5. Miller HR, Miller OK (1988). Gasteromycetes: Morphological and Developmental Features, with Keys to the Orders, Families, and Genera. Eureka, California: Mad River Press. p. 71. ISBN   0-916422-74-7.
  6. 1 2 Brodie HJ. (1951). "Two heterothallic species of the genus Nidula". Mycologia . 43 (3): 329–37. doi:10.2307/3755596. JSTOR   3755596.
  7. Deacon J. (2005). Fungal Biology. Cambridge, Massachusetts: Blackwell Publishers. pp. 31–2. ISBN   1-4051-3066-0.
  8. Poinar G Jr. (2014). "Bird's nest fungi (Nidulariales: Nidulariaceae) in Baltic and Dominican amber". Fungal Biology. 118 (3): 325–9. doi:10.1016/j.funbio.2014.01.004. PMID   24607356.
  9. 1 2 Brodie, The Bird's Nest Fungi, p. 144.
  10. 1 2 Brodie, The Bird's Nest Fungi, p. 143.
  11. Lloyd CG. (1906). "The Nidulariaceae". Mycological Writings. 2: 1–30.
  12. Das K, Zhao RL (2013). "Nidula shingbaensis sp. nov., a new bird's nest fungus from India". Mycotaxon. 125: 53–8. doi: 10.5248/125.53 .
  13. 1 2 Ayer WA, Singer PP (1980). "Phenolic metabolites of the bird's nest fungus Nidula niveo-tomentosa". Phytochemistry. 19 (12): 2717–21. Bibcode:1980PChem..19.2717A. doi:10.1016/S0031-9422(00)83949-7.
  14. Böker A, Fischer M, Berger RG (2001). "Raspberry ketone from submerged cultured cells of the basidiomycete Nidula niveo-tomentosa". Biotechnology Progress. 17 (3): 568–72. doi: 10.1021/bp010011b . PMID   11386881. S2CID   33371093.
  15. "Cuelure (4-[p-Acetoxyphenyl]-2-butanone) (128916) Fact sheet | Pesticides | US EPA" . Retrieved 2009-03-20.
  16. Erkel G, Becker U, Anke T, Sterner O (December 1996). "Nidulal, a novel inducer of differentiation of human promyelocytic leukemia cells from Nidula candida". Journal of Antibiotics. 49 (12): 1189–95. doi:10.1002/chin.199725178. PMID   9031663.

Cited works