Nonribosomal peptide

Last updated

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. [1] While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

Contents

Nonribosomal peptides are synthesized by nonribosomal peptide synthetases, which, unlike the ribosomes, are independent of messenger RNA. Each nonribosomal peptide synthetase can synthesize only one type of peptide. Nonribosomal peptides often have cyclic and/or branched structures, can contain non-proteinogenic amino acids including D-amino acids, carry modifications like N -methyl and N-formyl groups, or are glycosylated, acylated, halogenated, or hydroxylated. Cyclization of amino acids against the peptide "backbone" is often performed, resulting in oxazolines and thiazolines; these can be further oxidized or reduced. On occasion, dehydration is performed on serines, resulting in dehydroalanine. This is just a sampling of the various manipulations and variations that nonribosomal peptides can perform. Nonribosomal peptides are often dimers or trimers of identical sequences chained together or cyclized, or even branched.

Nonribosomal peptides are a very diverse family of natural products with an extremely broad range of biological activities and pharmacological properties. They are often toxins, siderophores, or pigments. Nonribosomal peptide antibiotics, cytostatics, and immunosuppressants are in commercial use.

Examples

Biosynthesis

Nonribosomal peptides are synthesized by one or more specialized nonribosomal peptide-synthetase (NRPS) enzymes. The NRPS genes for a certain peptide are usually organized in one operon in bacteria and in gene clusters in eukaryotes. However the first fungal NRP to be found was ciclosporin. It is synthesized by a single 1.6MDa NRPS. [4] The enzymes are organized in modules that are responsible for the introduction of one additional amino acid. Each module consists of several domains with defined functions, separated by short spacer regions of about 15 amino acids. [5]

The biosynthesis of nonribosomal peptides shares characteristics with the polyketide and fatty acid biosynthesis. Due to these structural and mechanistic similarities, some nonribosomal peptide synthetases contain polyketide synthase modules for the insertion of acetate or propionate-derived subunits into the peptide chain. [6]

Note that as many as 10% percent of bacterial NRPS are not laid out as large modular proteins, but as separate enzymes. [6] Some NRPS modules deviate from the standard domain structure, and some extra domains have been described. There are also NRPS enzymes that serve as a scaffold for other modifications to the substrate to incorporate unusual amino acids. [7]

Modules

The order of modules and domains of a complete nonribosomal peptide synthetase is as follows:

(Order: N-terminus to C-terminus; []: optionally; (): alternatively)

Domains

Starting stage

Elongation stages

Termination stage

Processing

The final peptide is often modified, e.g., by glycosylation, acylation, halogenation, or hydroxylation. The responsible enzymes are usually associated to the synthetase complex and their genes are organized in the same operons or gene clusters.

Priming and deblocking

To become functional, the 4'-phospho-pantetheine sidechain of acyl-CoA molecules has to be attached to the PCP-domain by 4'PP transferases (Priming) and the S-attached acyl group has to be removed by specialized associated thioesterases (TE-II) (Deblocking).

Substrate specificities

Most domains have a very broad substrate specificity and usually only the A-domain determines which amino acid is incorporated in a module. Ten amino acids that control substrate specificity and can be considered the 'codons' of nonribosomal peptide synthesis have been identified, and rational protein design has yielded methodologies to computationally switch the specificities of A-domains. [10] The condensation C-domain is also believed to have substrate specificity, especially if located behind an epimerase E-domain-containing module where it functions as a 'filter' for the epimerized isomer. Computational methods, such as SANDPUMA [11] and NRPSpredictor2, [12] have been developed to predict substrate specificity from DNA or protein sequence data.

Mixed with polyketides

Due to the similarity with polyketide synthases (PKS), many secondary metabolites are, in fact, fusions of NRPs and polyketides. In essence, this occurs when PK modules follow NRP modules, and vice versa. Although there is high degree of similarity between the Carrier (PCP/ACP) domains of both types of synthetases, the mechanism of condensation is different from a chemical standpoint:

See also

Related Research Articles

<span class="mw-page-title-main">Peptide bond</span> Covalent chemical bond between amino acids in a peptide or protein chain

In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 of one alpha-amino acid and N2 of another, along a peptide or protein chain.

<span class="mw-page-title-main">Alamethicin</span> Chemical compound

Alamethicin is a channel-forming peptide antibiotic, produced by the fungus Trichoderma viride. It belongs to peptaibol peptides which contain the non-proteinogenic amino acid residue Aib. This residue strongly induces formation of alpha-helical structure. The peptide sequence is

<span class="mw-page-title-main">Polymyxin</span> Group of antibiotics

Polymyxins are antibiotics. Polymyxins B and E are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides.

<span class="mw-page-title-main">Teicoplanin</span> Pharmaceutical drug

Teicoplanin is an antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis. It is a semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall synthesis.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Daptomycin</span> Antibiotic

Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.

<span class="mw-page-title-main">Acyl carrier protein</span> Cofactor of both fatty acid and polyketide biosynthesis

The acyl carrier protein (ACP) is a cofactor of both fatty acid and polyketide biosynthesis machinery. It is one of the most abundant proteins in cells of E. coli. In both cases, the growing chain is bound to the ACP via a thioester derived from the distal thiol of a 4'-phosphopantetheine moiety.

<span class="mw-page-title-main">Viomycin</span> Chemical compound

Viomycin is a member of the tuberactinomycin family, a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus.

<span class="mw-page-title-main">Gramicidin S</span> Chemical compound

Gramicidin S or Gramicidin Soviet is an antibiotic that is effective against some gram-positive and gram-negative bacteria as well as some fungi.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

<span class="mw-page-title-main">Tyrocidine</span> Chemical compound

Tyrocidine is a mixture of cyclic decapeptides produced by the bacteria Bacillus brevis found in soil. It can be composed of 4 different amino acid sequences, giving tyrocidine A–D. Tyrocidine is the major constituent of tyrothricin, which also contains gramicidin. Tyrocidine was the first commercially available antibiotic, but has been found to be toxic toward human blood and reproductive cells. The function of tyrocidine within its host B. brevis is thought to be regulation of sporulation.

Streptogramin B is a subgroup of the streptogramin antibiotics family. These natural products are cyclic hexa- or hepta depsipeptides produced by various members of the genus of bacteria Streptomyces. Many of the members of the streptogramins reported in the literature have the same structure and different names; for example, pristinamycin IA = vernamycin Bα = mikamycin B = osteogrycin B.

<span class="mw-page-title-main">Yersiniabactin</span> Chemical compound

Yersiniabactin (Ybt) is a siderophore found in the pathogenic bacteria Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, as well as several strains of enterobacteria including enteropathogenic Escherichia coli and Salmonella enterica. Siderophores, compounds of low molecular mass with high affinities for ferric iron, are important virulence factors in pathogenic bacteria. Iron—an essential element for life used for such cellular processes as respiration and DNA replication—is extensively chelated by host proteins like lactoferrin and ferritin; thus, the pathogen produces molecules with an even higher affinity for Fe3+ than these proteins in order to acquire sufficient iron for growth. As a part of such an iron-uptake system, yersiniabactin plays an important role in pathogenicity of Y. pestis, Y. pseudotuberculosis, and Y. entercolitica.

<span class="mw-page-title-main">Apratoxin A</span> Chemical compound

Apratoxin A - is a cyanobacterial secondary metabolite, known as a potent cytotoxic marine natural product. It is a derivative of the Apratoxin family of cytotoxins. The mixed peptide-polyketide natural product comes from a polyketide synthase/non-ribosomal peptide synthase pathway (PKS/NRPS). This cytotoxin is known for inducing G1-phase cell cycle arrest and apoptosis. This natural product's activity has made it a popular target for developing anticancer derivatives.

<span class="mw-page-title-main">Cereulide</span> Chemical compound

Cereulide is a toxin produced by some strains of Bacillus cereus, Bacillus megaterium and related species. It is a potent cytotoxin that destroys mitochondria. It also causes nausea and vomiting.

The nonribosomal code refers to key amino acid residues and their positions within the primary sequence of an adenylation domain of a nonribosomal peptide synthetase used to predict substrate specificity and thus (partially) the final product. Analogous to the nonribosomal code is prediction of peptide composition by DNA/RNA codon reading, which is well supported by the central dogma of molecular biology and accomplished using the genetic code simply by following the DNA codon table or RNA codon table. However, prediction of natural product/secondary metabolites by the nonribosomal code is not as concrete as DNA/RNA codon-to-amino acid and much research is still needed to have a broad-use code. The increasing number of sequenced genomes and high-throughput prediction software has allowed for better elucidation of predicted substrate specificity and thus natural products/secondary metabolites. Enzyme characterization by, for example, ATP-pyrophosphate exchange assays for substrate specificity, in silico substrate-binding pocket modelling and structure-function mutagenesis helps support predictive algorithms. Much research has been done on bacteria and fungi, with prokaryotic bacteria having easier-to-predict products.

Ribosomally synthesized and post-translationally modified peptides (RiPPs), also known as ribosomal natural products, are a diverse class of natural products of ribosomal origin. Consisting of more than 20 sub-classes, RiPPs are produced by a variety of organisms, including prokaryotes, eukaryotes, and archaea, and they possess a wide range of biological functions.

<span class="mw-page-title-main">C-1027</span> Chemical compound

C-1027 or lidamycin is an antitumor antibiotic consisting of a complex of an enediyne chromophore and an apoprotein. It shows antibiotic activity against most Gram-positive bacteria. It is one of the most potent cytotoxic molecules known, due to its induction of a higher ratio of DNA double-strand breaks than single-strand breaks.

<span class="mw-page-title-main">Chloroeremomycin</span> Chemical compound

Chloroeremomycin is a member of the glycopeptide family of antibiotics, such as vancomycin. The molecule is a non-ribosomal polypeptide that has been glycosylated. It is composed of seven amino acids and three saccharide units. Although chloroeremomycin has never been in clinical phases, oritavancin, a semi-synthetic derivative of chloroeremomycin, has been investigated.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).

References

  1. Dai L (2012). Ding K (ed.). Organic chemistry : breakthroughs and perspectives. Weinheim, Germany: Wiley-VCH. ISBN   9783527333776.
  2. Walton JD (July 2006). "HC-toxin". Phytochemistry. 67 (14): 1406–13. Bibcode:2006PChem..67.1406W. doi:10.1016/j.phytochem.2006.05.033. PMID   16839576.
  3. Johnson RD, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (July 2000). "Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity". Molecular Plant-Microbe Interactions. 13 (7): 742–53. doi:10.1094/MPMI.2000.13.7.742. PMID   10875335. S2CID   36754751.
  4. Turgay K, Krause M, Marahiel MA (February 1992). "Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes". Molecular Microbiology. 6 (4): 529–46. doi:10.1111/j.1365-2958.1992.tb01498.x. PMID   1560782. S2CID   25266991.
  5. Fischbach MA, Walsh CT (August 2006). "Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms". Chemical Reviews. 106 (8): 3468–96. doi:10.1021/cr0503097. PMID   16895337. S2CID   29014161.
  6. 1 2 Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (June 2014). "Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes". Proceedings of the National Academy of Sciences of the United States of America. 111 (25): 9259–64. Bibcode:2014PNAS..111.9259W. doi: 10.1073/pnas.1401734111 . PMC   4078802 . PMID   24927540.
  7. McErlean M, Overbay J, Van Lanen S (March 2019). "Refining and expanding nonribosomal peptide synthetase function and mechanism". Journal of Industrial Microbiology & Biotechnology. 46 (3–4): 493–513. doi:10.1007/s10295-018-02130-w. PMC   6460464 . PMID   30673909.
  8. Felnagle EA, Barkei JJ, Park H, Podevels AM, McMahon MD, Drott DW, Thomas MG (October 2010). "MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases". Biochemistry. 49 (41): 8815–7. doi:10.1021/bi1012854. PMC   2974439 . PMID   20845982.
  9. Zhang W, Heemstra JR, Walsh CT, Imker HJ (November 2010). "Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins". Biochemistry. 49 (46): 9946–7. doi:10.1021/bi101539b. PMC   2982891 . PMID   20964365.
  10. Chen CY, Georgiev I, Anderson AC, Donald BR (March 2009). "Computational structure-based redesign of enzyme activity". Proceedings of the National Academy of Sciences of the United States of America. 106 (10): 3764–9. Bibcode:2009PNAS..106.3764C. doi: 10.1073/pnas.0900266106 . PMC   2645347 . PMID   19228942.
  11. Chevrette MG, Aicheler F, Kohlbacher O, Currie CR, Medema MH (October 2017). "SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria". Bioinformatics. 33 (20): 3202–3210. doi:10.1093/bioinformatics/btx400. PMC   5860034 . PMID   28633438.
  12. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (July 2011). "NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity". Nucleic Acids Research. 39 (Web Server issue): W362-7. doi:10.1093/nar/gkr323. PMC   3125756 . PMID   21558170.
  13. Bloudoff, Kristjan; Schmeing, Martin T. (2017). "Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1865 (11): 1587–1604. doi: 10.1016/j.bbapap.2017.05.010 . PMID   28526268.

Further reading