Ophiocordyceps unilateralis

Last updated

Contents

Ophiocordyceps unilateralis
Ophiocordyceps unilateralis.png
Dead ants infected with Ophiocordyceps unilateralis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Ophiocordycipitaceae
Genus: Ophiocordyceps
Species:
O. unilateralis
Binomial name
Ophiocordyceps unilateralis
(Tul.) Petch (1931)
Synonyms [1]

Torrubia unilateralisTul. (1865)
Cordyceps unilateralis(Tul.) Sacc. (1883)

Ophiocordyceps unilateralis, commonly known as zombie-ant fungus, [2] is an insect-pathogenic fungus, discovered by the British naturalist Alfred Russel Wallace in 1859, and currently found predominantly in tropical forest ecosystems. O. unilateralis infects ants of the tribe Camponotini, with the full pathogenesis being characterized by alteration of the behavioral patterns of the infected ant. Infected hosts leave their canopy nests and foraging trails for the forest floor, an area with a temperature and humidity suitable for fungal growth; they then use their mandibles to attach themselves to a major vein on the underside of a leaf, where the host remains after its eventual death. [3] The process, leading up to mortality, takes 4–10 days, and includes a reproductive stage where fruiting bodies grow from the ant's head, rupturing to release the fungus's spores. O. unilateralis is, in turn, also susceptible to fungal infection itself, an occurrence that can limit its impact on ant populations, which has otherwise been known to devastate ant colonies.

Ophiocordyceps unilateralis and related species are known to engage in an active secondary metabolism for, among other reasons, the production of substances active as antibacterial agents that protect the fungus-host ecosystem against further pathogenesis during fungal reproduction. Because of this secondary metabolism, an interest in the species has been taken by natural products chemists, with corresponding discovery of small molecule agents (e.g. of the polyketide family) of potential interest for use as human immunomodulatory, anti-infective, and anticancer agents.

Systematics

After years of research, the taxonomy of Ophiocordyceps unilateralis is becoming increasingly clear.

Cordyceps vs Ophiocordyceps

Throughout history there has been confusion about the distinction between the genera Cordyceps and Ophiocordyceps . There have been many debates about whether the zombie-ant fungus (and other fungi) belonged to one or to the other as Ophiocordyceps was only recently brought forward.

The genus Cordyceps comprises over 400 species, historically classified in the family Clavicipitaceae within the order Hypocreales. The classification was based on different morphological characteristics such as filiform ascospores and cylindrical asci. [4] When Cordyceps were first classified, there was no concrete evidence for the genus Ophiocordyceps. However, in 2007, important new molecular data was tested, and enabled them to reorganize the family Clavicipitaceae. It was found that Clavicipitaceae was in fact three distinct monophyletic families: the Clavicipitaceae, the Cordycipitaceae and the Ophiocordycipitaceae. [4]

The new molecular phylogenetics studies contradicted the older classification and moved all Cordyceps species forming a sister group with Tolypocladium , into Ophiocordycipitaceae. Fungi able to parasitize ants were also included in the transfer, such as Cordyceps unilateralis which was later renamed Ophiocordyceps unilateralis. [5] Following this study, multiple traits such as the production of darkly pigmented, hard to flexible stromata were defined as characteristics of the family Ophiocordycipitaceae. [5]

Ophiocordyceps unilateralis sensu lato

The fungus's scientific name is sometimes written as Ophiocordyceps unilateralis sensu lato , which means 'in the broad sense', because the species actually represents a complex of many species within O. unilateralis. [6]

Support for this term has become increasingly important. In 2011, it was hypothesized that the zombie-ant fungus could actually be described as a complex of species which are host-specific, meaning that one O. unilateralis species can only successfully infect and manipulate one host ant species. [3] There is a possibility that this resulted in or reinforced the reproductive isolation of the fungi, leading to its speciation. Following this, a study conducted in Brazil delimited, using morphological comparisons of the ascospores, germination processes, and asexual morphs, four different Ophiocordyceps species. Afterwards, three new species were described in the Brazilian Amazon, six in Thailand, and one in Japan. [7]

More recently in 2018, 15 new O. unilateralis species were described based on classic taxonomic criteria, and macro-morphological data with a deeper focus on ascospore and asexual morphology. The asexual morphologies made it possible to distinguish two different clades mainly composed of species associated with ants which they termed "O. unilateralis core clade" and "O. kniphofioides subclade." [5]

Further analyses were conducted using a set of different traits. Morphological traits were used and included both macro-morphological characters (e.g. typical single stroma arising from the host's dorsal pronotum, the ascoma (perithecia) growing from the stroma) and microscopic traits (e.g. the morphology of the ascospores in terms of size, shape, septation and germination). Moreover, other traits such as the host and the location of the death grip were added to the analyses. [5] The morphological study led to 15 new identified species, with 14 which were distributed in the core clade, and one in the subclade. Moreover, it was found that species in the O. kniphofioides subclade specialise on neotropical ants, whereas species in the core clade specialise on Camponotini species. [5]

Species within the O. unilateralis core clade as described in 2018: [5]

Species within the O. kniphofioides subclade as described in 2018: [5]

Morphology

Schematic representation of Ophiocordyceps unilateralis growing out of an infected host ant Schematic drawing of Ophiocordyceps unilateralis morphology on an infected ant.png
Schematic representation of Ophiocordyceps unilateralis growing out of an infected host ant

Typical morphology

The zombie-ant fungus is easily identifiable when its reproductive structure becomes apparent on its dead host, usually a carpenter ant. At the end of its life cycle, O. unilateralis typically generates a single, wiry yet pliant, darkly pigmented stroma which arises from the dorsal pronotum region of the ant once it is dead. [8] Moreover, perithecia, the spore-bearing sexual structure, can be observed on the stalk, just below its tip. [4] This complex forms the fungus' fruiting body.

Most species within the O. unilateralis s.l. species complex have both a sexual (teleomorph) and an asexual morph (anamorph). These are different in terms of their function and characteristics. Generally, the asexual morphs identified for Ophiocordyceps are Hirsutella and Hymenostilbe , two genera of asexually reproducing fungi. [8]

Morphological variation

O. unilateralis species exhibit morphological variations which are most certainly due to their wide geographic range, from Japan to the Americas. Moreover, it has been hypothesized that their morphological variations may also be a result of one fungus species maximizing its infection on one specific host ant species (host-specific infections). Different subspecies of ant can occur within the same area, which means that in order to coexist they have to occupy different ecological niches. Consequently, the fungi may have evolved at the subspecies level in order to maximize its fitness. [7]

O. unilateralis core clade morphological characteristics

The O. unilateralis core clade, as described in 2018, has distinct morphological characteristics. It exhibits a single stroma with a Hirsutella asexual morph, which arises from the dorsal neck region of the dead ant and produces a dark brown perithecia attached to its stalk. [5] These species are also recognizable through the host species they infect, which are only Camponotini species. Once the host is killed by the fungus, it is commonly found fixed through their mandibles onto the surfaces of leaves. [5]

O. kniphofioides subclade morphological characteristics

The O. kniphofioides subclade, as described in 2018, also has distinct morphological characteristics. Its species produce a stroma that grows laterally from the host's thorax which itself generates an orange ascoma. Moreover, species within this subclade share a Hirsutella asexual morph. [5] As for the core clade, these species are also recognizable through the hosts they infect, which are usually neotropical ant species. The subclade does not present the same extended phenotype with the famous "death grip" that O. unilateralis species typically exhibit. Their hosts usually die at the base of large trees in the Amazonian rainforest, among the moss carpets. [5]

Life cycle

In tropical forests, the ant species Camponotus leonardi lives in the high canopy and has an extensive network of aerial trails. Sometimes the canopy gaps are too difficult to cross, so the ants' trails descend to the forest floor where they are exposed to O. unilateralis spores. The spores attach to their exoskeletons and eventually break through using mechanical pressure and enzymes. [8] Like other fungi pathogenic to insects in the genus Ophiocordyceps, the fungus targets a specific host species, Camponotus leonardi; despite this, the fungus may parasitize other closely related species of ants with lesser degrees of host manipulation and reproductive success. [9]

Yeast stages of the fungus spread in the ant's body and presumably produce compounds that affect the ant's hemocoel, using the evolutionary trait of an extended phenotype to manipulate the behavioral patterns exhibited by the ant. [10] An infected ant exhibits irregularly timed full-body convulsions that dislodge it from its canopy nest to the forest floor. [11]

The changes in the behavior of the infected ants are very specific, giving rise to the popular term "zombie ants." Behaviors are tuned for the benefit of the fungus in terms of its growth and its transmission, thereby increasing its fitness. The ant climbs up the stem of a plant and uses its mandibles with abnormal force to secure itself to a leaf vein, leaving dumbbell-shaped marks on it. The ants generally clamp to a leaf's vein at a height of 26 cm above the forest floor, [10] on the northern side of the plant, in an environment with 94–95% humidity and temperatures between 20 and 30 °C (68 and 86 °F). Infections may lead to 20 to 30 dead ants per square meter. [12] When the dead ants are moved to other places and positions, further vegetative growth and sporulation either fails to occur or results in undersized and abnormal reproductive structures. [10] In temperate forests, the typical behavior of zombie ants is to attach themselves to the lower side of twigs, not leaves. [13]

A search of plant-fossil databases revealed similar marks on a fossil leaf from the Messel Pit, which is 48 million years old. [14] [15] Once the mandibles of the ant are secured to the leaf vein, atrophy quickly sets in, destroying the sarcomere connections in the muscle fibers and reducing the mitochondria and sarcoplasmic reticular. The ant is no longer able to control the muscles of the mandible and remains fixed in place, hanging upside-down on the leaf. This lockjaw trait is popularly known as the death grip and is essential in the fungus's lifecycle. [11] A study led in Thailand revealed that there is a synchronization of this manipulated biting behavior at solar noon. [13]

The fungus then kills the ant and continues to grow as its hyphae invade more soft tissues and structurally fortify the ant's exoskeleton. [9] More mycelia then sprout out of the ant, securely anchoring it to the plant substrate while secreting antimicrobials to ward off competition. [9] When the fungus is ready to reproduce, its fruiting bodies grow from the ant's head and rupture, releasing the spores. This process takes 4–10 days. [9] Dead ants are found in areas termed "graveyards" which contain high densities of dead ants previously infected by the same fungus. [16]

The term "zombie ants" has been used in popular media as well as scientific articles, but has also been described as "catchy, yet misleading." [17] [18]

Natural products

Schematic representation of the ant behavioral manipulation caused by natural products secreted by O. unilateralis Ant behavioural manipulation by O. unilateralis.png
Schematic representation of the ant behavioral manipulation caused by natural products secreted by O. unilateralis

O. unilateralis' life cycle includes and depends on the infection and the manipulation of a carpenter ant, principally C. leonardi. [3] The behavioral manipulation of the ant, which gives rise to the name "zombie-ant", is an extended phenotype of the fungus. It first affects the ant's behavior through convulsions that make it fall from its high canopy nest onto the forest floor. [11] This is followed by the fungus controlling the climbing of the ant and the locking of its jaw (and subsequent death) onto a leaf around 25 centimetres above the ground, which is thought to be the optimal height for fungal spore growth and dispersion. [11]

Throughout the lifecycle, unique challenges must be met by equally unique metabolic activities. The fungal pathogen must attach securely to the arthropod exoskeleton and penetrate it—avoiding or suppressing host defenses—then, control the behavior of the host before killing it; and finally, it must protect the carcass from microbial and scavenger attack. [8]

The behavioral manipulation of the ant would not be possible without the presence of huge fungal cell populations beside the host's brain [13] and within muscles [19] because these lead to the secretion of various metabolites known to have important behavioral consequences. [20] During the infection the parasite comes across an array of environments such as different host tissues or the immune response. [20] Studies have shown that O. unilateralis reacts heterogeneously by secreting different metabolites according to the host tissue it encounters and whether they are live or dead. [19] The identification of these natural products is important in order to understand which aspects of the ants are under control and consequently how O. unilateralis manipulates the ant.

  1. Attachment of O. unilateralis spores onto the ant's exoskeleton: The first step O. unilateralis has to overcome to have a successful infection is to attach itself onto the ant's cuticle and then infiltrate it. For this purpose, the fungus' hypha pierces the exoskeleton using enzymes such as chitinase, lipase and protease, combined with mechanical pressure. [8]
  2. Convulsions and climbing behavior: After the fungus enters the ant, it propagates, and fungal cells are found beside the host's brain. Once the population is of sufficient size, the fungus secretes compounds and takes over the central nervous system (CNS), which enables it to manipulate the ant to reach the forest floor and climb up the vegetation. [13] Two candidate compounds, sphingosine and guanidinobutyric acid (GBA), have been identified as responsible for the manipulation of the host brain. Both compounds are known to be involved in various neurological disorders. However, more research is needed to determine whether other fungal metabolites interact with the host brain to cause higher levels of sphingosine and GBA. [13] Some studies identified another compound, hypoxanthine, present at high extracellular concentrations. Hypoxanthine has deleterious effects on neural tissues of the cerebral cortex, which in the context of zombie ants may indicate a way for the fungus to alter the motor neurons of the ant, consequently affecting its behavior. [19]
  3. Death grip: The famous "death grip" exhibited by the ant is also a result of fungus-induced manipulation. This behavior consists of an infected ant locking its mandibles onto (i.e. biting) a leaf so tightly that the ant is prevented from falling as it dies hanging upside down, consequently enabling the proper growth of the fungus' fruiting body. [20] This is possibly a result of the atrophy of the ant's mandibular muscles caused by the secretion of fungal compounds. In multiple studies, fungal cell populations were found within atrophied mandibular muscle tissues. These fungal cell populations have been found to be interconnected through anastomosing tubules. Researchers have proposed that these hyperconnected fungal networks may indicate cooperativity between fungal cells to control the actions of the ant's mandibular muscle. [21] Another common hypothesis amongst researchers is that fungal cells infiltrate between the muscle fibers and then secrete chemicals which cause the muscles to atrophy. [19] Significant decreases in leucine concentration and mitochondria number were identified in infected ants. A deficit in leucine results in the prevention of muscle regeneration because the amino acid is a nutrient regulator of muscle protein synthesis. A decrease in mitochondria ultimately results in a reduction of energy and calcium levels due to the lack of ATP and sarcoplasmic reticulum which provides calcium for actinmyosin binding which is essential for muscle cells. [19]

More in-depth research is needed for the identification of other fungal compounds which act to atrophy the mandibular muscles, and for the understanding of their exact effects on the ant.

Natural products are host specific

Effects of O. unilateralis on the host have been found to vary according to host species. The ant species which are normally found infected in nature exhibit a manipulated behavior, whereas the species which are not typically infected are killed by the infection, but their behavior is not altered. This is likely due to the heterogeneous nature of the fungus which secretes different metabolites according to host species. [13]

Geographic distribution and first known appearance

Many studies describe Ophiocordyceps unilateralis distribution as pantropical since it occurs mainly in tropical forest ecosystems. [6] However, there are some reports of the zombie-ant fungus in warm-temperate ecosystems. [13]

Its distribution includes tropical rainforests located in Brazil, Australia and Thailand, and temperate forests found in South Carolina, Florida and Japan. [5]

A 48-million-year-old fossil of a leaf stem exhibiting dumbbell-shaped marks characteristic of those made by an ant in the death-grip of Ophiocordyceps unilateralis was discovered in the Messel pit (Germany). [22]

Host impact

When O. unilateralis-infected ants die, they are mainly located in regions containing a high density of ants which were previously manipulated and killed. [16] These areas are termed "graveyards" and can be of 20 to 30 metres (66 to 98 ft) in range [23] , with a local density of dead ants possibly exceeding 25 per square metre (2/sq ft). [11]

The density of dead ants within these graveyards can vary according to climatic conditions. This means that environmental conditions such as humidity and temperature can influence O.unilateralis' effects on the host population. [23] In fact, studies have described seasonal patterns in the density of previously infected dead ants, with an increase during the rainy season and a decrease during the dry season. [3] It is thought that large precipitation events at the beginning and the end of the rainy season stimulates fungal development, [3] which leads to more spores being released and ultimately more individuals being infected and killed.

Medicinal potential

Ophiocordyceps are known in the pharmaceutical world to be a medically-important group. [7] O. unilateralis fungi produce various known secondary metabolites, as well as several structurally uncharacterised substances. These natural products are reportedly being investigated as potential leads in discovery efforts toward immunomodulatory, antitumor, hypoglycemic, and hypocholesterolemic targets. [24]

In an Ophiocordyceps species within Japanese cicadas, the Ophiocordyceps replaces the symbiotic bacteria within the cicadas to help the host process sap as nutrients, unlike other related species, such as the Ophiocordyceps sinensis, which is a traditional immune booster and cancer treatment in Tibetan and Chinese culture. [25]

Naphthoquinone derivatives

Naphthoquinone derivatives are an example of secondary metabolite with important pharmaceutical potentials produced by O. unilateralis. Six known naphthoquinone derivatives have been isolated from O. unilateralis, namely erythrostominone, deoxyerythrostominone, 4-O-methyl erythrostominone, epierythrostominol, deoxyerythrostominol, and 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-1,4-naphthoquinone, which have shown activity in in vitro assays related to antimalarial drug discovery. [26] [27] In addition to having antimalarial activities, all six of these secondary metabolites have been demonstrated to have anticancer and antibacterial activities. [28]

Moreover, the use of red naphthoquinone pigments produced by O. unilateralis has been studied as a dye for food, cosmetic, and pharmaceutical manufacturing processes. [29] In fact, naphthoquinone derivatives produced by the fungus show a red color under acidic conditions, and a purple color under basic conditions. These pigments are stable against acid/alkaline conditions and light and are not cytotoxic, which makes them applicable for food coloring and as a dye for other materials. These attributes also make it a prime candidate for antituberculosis testing in secondary TB patients, by improving symptoms and enhancing immunity when combined with chemotherapeutic drugs. [30] [31]

Polyketides

In 2009, a study showed that O. unilateralis also produces polyketides. These secondary metabolites have been used in antibiotics such as patulin, cholesterol medication such as compactin, and antifungal treatments. It has also been reported that polyketides have other therapeutic effects such as antitumor, antioxidant and antiaging activities. [32]

Fungal hyperparasite

O. unilateralis suffers from an unidentified fungal hyperparasite, reported in the lay press as the "antizombie-fungus fungus", that results in only 6–7% of sporangia being viable, limiting the damage O. unilateralis inflicts on ant colonies. The hyperparasite moves in to attack O. unilateralis as the fungal stalk emerges from the ant's body, which can stop the stalk from releasing its spores. [33] [34]

The graveyards of dead ants are numerous and spread throughout the surrounding area of the colony. Though O. unilateralis is very virulent, only about 6.5% of all fruiting bodies are viable spore producers. This is caused by the weakening of the fungus by the hyperparasite, which may limit the viability of infectious spores. Ants also groom each other to combat microscopic organisms that could potentially harm the colony. Additional fungi also grant beneficial assistance to the colony. [34]

Parasite adaptation

In hostparasite dynamics, both the host and the parasite are under selective pressure: the parasite evolves to increase its transmission, whereas the host evolves to avoid and/or resist the infection by the parasite.

Extended phenotype

Some parasites have evolved to manipulate their host's behavior in order to increase their transmission to uninfected susceptible individuals, thereby increasing their fitness. [23] This host manipulation is termed the "extended phenotype" of the parasite and is a form of adaptation. Host ant manipulation by O. unilateralis represents one of the best-known examples of extended phenotypes. [11]

The extended phenotype of O. unilateralis typically depicts the infected ant leaving its canopy nest and its normal foraging path to reach the forest floor and subsequently climbs to around 25 centimetres (9.8 in) above ground level, a height that is considered optimal for fungal growth due to its humidity level and temperature. This is followed by a "death grip" of the infected ant once it has reached a location with optimal conditions for post-mortem fungal development. This leads to the fungus continuing its growth and releasing fungal spores onto the forest floor. [20] These spores will then be encountered by the ants which, when the aerial foraging route is not possible, have to occasionally descend to ground level. [23] Therefore, O. unilateralis controls the ant's behavior and this manipulation represents an adaptation for the fungus where natural selection acts on its genes, increasing the fungus' fitness. [20]

Somatic investment

Some studies proposed a theory in which O. unilateralis has another possible form of adaptation which ensures its repeated reproduction. This would be crucial for O. unilateralis s.l. species as they can produce and release within the air, clear and thin-walled spores which are susceptible to environmental conditions such as UV radiation and dryness. [34]

In fact, studies suggest that the short viability of the fungal spores lead to the need of somatic investment (growth/survival) by the parasite in order to sustain the growth of the fungus' fruiting body on its host, thereby enabling successive reproduction. To do so, O. unilateralis fortifies the ant cadaver to prevent its decay, which consequently ensures the growth of the fruiting body. Therefore, the zombie-ant fungus adapts to the short viability of its spores by increasing their production using the dead ant. [34]

Host adaptation

The principal hosts of O. unilateralis evolved adaptive behaviors able to limit the contact rate between uninfected susceptible hosts and infected hosts, thereby reducing the risk of transmission.

O.unilateralis' principal hosts evolved efficient behavioral forms of social immunity. The ants clean each other's exoskeletons to decrease the presence of spores attached. [11] Also, ants can sense that a member of the colony is infected; healthy ants carry the O. unilateralis-infected individual far away from the colony to avoid exposure to spores. There are also reports that most worker ants remain inside the nest boundaries; this would mean only foragers were at risk of infection. [34]

Moreover, one of the fungus' principal hosts, Camponotus leonardi, provided evidence for the avoidance of the forest floor by the host ants as a defence method. [23] In areas where O. unilateralis is present, C. leonardi builds its nests high in the canopy, and has a broad network of aerial trails. These trails occasionally move down to the ground level, where infection and graveyards occur, due to canopy gaps too difficult for the ants to cross. When the trails descend to the forest floor, their length is only of three to five meters before going back up into the canopy. This demonstrates the avoidance of the zones of infection by the ants. Additionally, more evidence participates in the favour of this defence method being adaptive as it is not observed in undisturbed forests where the zombie-ant fungus is not present. [23]

In fiction

In the video game series The Last of Us , Ophiocordyceps unilateralis has evolved to infect humans, thus creating zombie-like enemies in the game. Also, in episode two of the 2023 television series The Last of Us on HBO Max, [35] Ophiocordyceps unilateralis is revealed to be the primary cause of the infected outbreak and subsequent collapse of human civilization. In the show, the fungus, having adapted to higher temperatures due to climate change, takes control of humans (as opposed to insects) as an alternative host and causes them to exhibit erratic behaviors, such as the desire to attack and infect non-infected humans. Craig Mazin, who co-wrote and produced the series, said that everything the series suggests fungi do, they have done forever in real life. [36]
In the 2014 novel The Girl With All The Gifts , its 2016 film adaptation and its prequel novel entitled The Boy on the Bridge - all written by M.R. Carey, a strain of Ophiocordyceps unilateralis is similarly able to infect the human population through exchange of bodily fluids, leading to an apocalyptic world inhabited by zombie-like "hungries" who attack non-infected. The novel “The Genius Plague” by David Walton, though not about this species specifically, expands on the idea of fungi influencing animals with a fungus that invades human brains and influences their actions toward its advantage.

See also

Related Research Articles

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<span class="mw-page-title-main">Parasitoid</span> Organism that lives with its host and kills it

In evolutionary ecology, a parasitoid is an organism that lives in close association with its host at the host's expense, eventually resulting in the death of the host. Parasitoidism is one of six major evolutionary strategies within parasitism, distinguished by the fatal prognosis for the host, which makes the strategy close to predation.

<i>Ophiocordyceps sinensis</i> Species of fungus

Ophiocordyceps sinensis, known colloquially as caterpillar fungus, is an entomopathogenic fungus in the family Ophiocordycipitaceae. It is mainly found in the meadows above 3,500 metres (11,500 ft) on the Tibetan Plateau in Tibet and the Himalayan regions of Bhutan, India, and Nepal. It parasitizes larvae of ghost moths and produces a fruiting body which is valued in traditional Chinese medicine as an aphrodisiac. Caterpillar fungus contains the compound cordycepin, an adenosine derivative. However, the fruiting bodies harvested in nature usually contain high amounts of arsenic and other heavy metals, so they are potentially toxic and sales have been strictly regulated by China's State Administration for Market Regulation since 2016.

<i>Cordyceps</i> Genus of fungi

Cordyceps is a genus of ascomycete fungi that includes about 600 worldwide species. Diverse variants of cordyceps have had more than 1,500 years of use in Chinese medicine. Most Cordyceps species are endoparasitoids, parasitic mainly on insects and other arthropods ; a few are parasitic on other fungi.

<span class="mw-page-title-main">Microsporidia</span> Phylum of fungi

Microsporidia are a group of spore-forming unicellular parasites. These spores contain an extrusion apparatus that has a coiled polar tube ending in an anchoring disc at the apical part of the spore. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to fungi. These fungal microbes are obligate eukaryotic parasites that use a unique mechanism to infect host cells. They have recently been discovered in a 2017 Cornell study to infect Coleoptera on a large scale. So far, about 1500 of the probably more than one million species are named. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Approximately 10 percent of the species are parasites of vertebrates —several species, most of which are opportunistic, can infect humans, in whom they can cause microsporidiosis.

<i>Beauveria bassiana</i> Species of fungus

Beauveria bassiana is a fungus that grows naturally in soils throughout the world and acts as a parasite on various arthropod species, causing white muscardine disease; it thus belongs to the group of entomopathogenic fungi. It is used as a biological insecticide to control a number of pests, including termites, thrips, whiteflies, aphids and various beetles. Its use in the control of bed bugs and malaria-transmitting mosquitos is under investigation.

<span class="mw-page-title-main">Entomopathogenic fungus</span> Fungus that can act as a parasite of insects

An entomopathogenic fungus is a fungus that can kill or seriously disable insects.

Hyphomycetes are a form classification of fungi, part of what has often been referred to as fungi imperfecti, Deuteromycota, or anamorphic fungi. Hyphomycetes lack closed fruit bodies, and are often referred to as moulds. Most hyphomycetes are now assigned to the Ascomycota, on the basis of genetic connections made by life-cycle studies or by phylogenetic analysis of DNA sequences; many remain unassigned phylogenetically.

<i>Massospora cicadina</i> Species of fungus that infects periodical cicadas

Massospora cicadina is a fungal pathogen that infects only 13 and 17 year periodical cicadas. Infection results in a "plug" of spores that replaces the end of the cicada's abdomen while it is still alive, leading to infertility, disease transmission, and eventual death of the cicada.

<i>Ophiocordyceps</i> Genus of fungi

Ophiocordyceps is a genus of fungi within the family Ophiocordycipitaceae. The widespread genus, first described scientifically by British mycologist Tom Petch in 1931, contains about 140 species that grow on insects. Anamorphic genera that correspond with Ophiocordyceps species are Hirsutella, Hymenostilbe, Isaria, Paraisaria, and Syngliocladium.

Ophiocordyceps camponoti-balzani is a species of fungus that parasitizes insect hosts of the order Hymenoptera, primarily ants. It was first isolated from Viçosa, Minas Gerais, on Camponotus balzani. This species was formerly thought to be Ophiocordyceps unilateralis, which has subsequently been divided into four species. O. camponoti-balzani infects ants, and eventually kills the hosts after they move to an ideal location for the fungus to spread its spores. This has earned the species names such as “zombie fungus”, given the fungus has been observed to cause its hosts to bite hard into the substrate it stands on, so that the fungus can then stably grow.

Behavior-altering parasites are parasites with two or more hosts, capable of causing changes in the behavior of one of their hosts to enhance their transmission, sometimes directly affecting the hosts' decision-making and behavior control mechanisms. They do this by making the intermediate host, where they may reproduce asexually, more likely to be eaten by a predator at a higher trophic level which becomes the definitive host where the parasite reproduces sexually; the mechanism is therefore sometimes called parasite increased trophic facilitation or parasite increased trophic transmission. Examples can be found in bacteria, protozoa, viruses, and animals. Parasites may also alter the host behaviour to increase protection of the parasites or their offspring; the term bodyguard manipulation is used for such mechanisms.

Ophiocordyceps myrmecophila is a species of fungus that parasitizes insect hosts, in particular members of the order Hymenoptera.

<i>Cordyceps militaris</i> Species of fungus

Cordyceps militaris is a species of fungus in the family Cordycipitaceae, and the type species of the genus Cordyceps, which consists of hundreds of species. The species was originally described by Carl Linnaeus in 1753 as Clavaria militaris. Cordyceps militaris parasitizes insects and is used use in traditional Chinese medicine and modern pharmaceuticals.

Ophiocordyceps camponoti-novogranadensis is a species of fungus that parasitizes insect hosts, in particular members of the order Hymenoptera. It was first isolated from Parque Estadual de Itacolomi in Ouro Preto, at an altitude of 1,000 metres (3,300 ft), on Camponotus novogranadensis.

Ophiocordyceps camponoti-melanotici is a species of fungus that parasitizes insect hosts, in particular members of the order Hymenoptera. It was first isolated from Viçosa, Minas Gerais, on Camponotus melanoticus.

Ophiocordyceps camponoti-rufipedis is a species of fungus that parasitizes insect hosts, in particular members of the order Hymenoptera. It was first isolated from Viçosa, Minas Gerais, at an altitude of 700 metres (2,300 ft) on Camponotus rufipes.

<span class="mw-page-title-main">Mycobiome</span> The fungal community in and on an organism

The mycobiome, mycobiota, or fungal microbiome, is the fungal community in and on an organism.

<i>Ophiocordyceps robertsii</i> Species of fungus

Ophiocordyceps robertsii, known in New Zealand as vegetable caterpillar is an entomopathogenic fungus belonging to the order Hypocreales (Ascomycota) in the family Ophiocordycipitaceae. It invades the caterpillars of leaf-litter dwelling moths and turns them into fungal mummies, sending up a fruiting spike above the forest floor to shed its spores. Caterpillars eat the spores whilst feeding on leaf litter to complete the fungal life cycle. Evidence of this fungus can be seen when small brown stems push through the forest floor: underneath will be the dried remains of the host caterpillar. This species was first thought by Europeans to be a worm or caterpillar that burrowed from the top of a tree to the roots, where it exited and then grew a shoot of the plant out of its head. It was the first fungus provided with a binomial name from New Zealand.

<i>Ophiocordyceps dipterigena</i> Species of fungus

Ophiocordyceps dipterigena is an entomopathogenic fungi species from the genus Ophiocordyceps. This species was originally described in 2007.

References

  1. "Ophiocordyceps unilateralis". MycoBank . International Mycological Association . Retrieved 2011-07-19.
  2. Zimmer, Carl (2019-10-24). "After This Fungus Turns Ants Into Zombies, Their Bodies Explode". The New York Times. ISSN   0362-4331 . Retrieved 2022-04-30.
  3. 1 2 3 4 5 Mongkolsamrit S, Kobmoo N, Tasanathai K, Khonsanit A, Noisripoom W, Srikitikulchai P, et al. (November 2012). "Life cycle, host range and temporal variation of Ophiocordyceps unilateralis/Hirsutella formicarum on Formicine ants". Journal of Invertebrate Pathology. 111 (3): 217–24. doi:10.1016/j.jip.2012.08.007. PMID   22959811.
  4. 1 2 3 Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007). "Phylogenetic classification of Cordyceps and the clavicipitaceous fungi". Studies in Mycology. 57 (1): 5–59. doi:10.3114/sim.2007.57.01. PMC   2104736 . PMID   18490993.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 Araújo JP, Evans HC, Kepler R, Hughes DP (June 2018). "Ophiocordyceps. I. Myrmecophilous hirsutelloid species". Studies in Mycology. 90: 119–160. doi: 10.1016/j.simyco.2017.12.002 . PMC   6002356 . PMID   29910522.
  6. 1 2 Evans HC, Elliot SL, Hughes DP (March 2011). "Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil". PLOS ONE. 6 (3): e17024. Bibcode:2011PLoSO...617024E. doi: 10.1371/journal.pone.0017024 . PMC   3047535 . PMID   21399679.
  7. 1 2 3 Evans HC, Araújo JP, Halfeld VR, Hughes DP (June 2018). "Epitypification and re-description of the zombie-ant fungus, Ophiocordyceps unilateralis (Ophiocordycipitaceae)". Fungal Systematics and Evolution. 1: 13–22. doi:10.3114/fuse.2018.01.02. PMC   7274273 . PMID   32518897.
  8. 1 2 3 4 5 Evans HC, Elliot SL, Hughes DP (September 2011). "Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests?". Communicative & Integrative Biology. 4 (5): 598–602. doi:10.4161/cib.16721. PMC   3204140 . PMID   22046474.
  9. 1 2 3 4 Sample I (18 August 2010). "'Zombie ants' controlled by parasitic fungus for 48m years". News » Science » Microbiology. The Guardian . Retrieved 2010-08-22.
  10. 1 2 3 Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, et al. (September 2009). "The life of a dead ant: the expression of an adaptive extended phenotype". The American Naturalist. 174 (3): 424–33. doi:10.1086/603640. hdl: 11370/e6374602-b2a0-496c-b78e-774b34fb152b . JSTOR   10.1086/603640. PMID   19627240. S2CID   31283817.
  11. 1 2 3 4 5 6 7 Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (May 2011). "Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection". BMC Ecology. 11 (1): 13. doi: 10.1186/1472-6785-11-13 . PMC   3118224 . PMID   21554670.
  12. Attenborough D (3 November 2008). "Cordyceps: attack of the killer fungi". Planet Earth. BBC Worldwide . Retrieved 2013-04-21.
  13. 1 2 3 4 5 6 7 de Bekker C, Quevillon LE, Smith PB, Fleming KR, Ghosh D, Patterson AD, Hughes DP (August 2014). "Species-specific ant brain manipulation by a specialized fungal parasite". BMC Evolutionary Biology. 14 (1): 166. doi: 10.1186/s12862-014-0166-3 . PMC   4174324 . PMID   25085339.
  14. "Fossil Reveals 48-Million-Year History of Zombie Ants". Science Daily. 18 August 2010. Retrieved 2010-09-12.
  15. Hughes DP, Wappler T, Labandeira CC (February 2011) [18 August 2010]. "Ancient death-grip leaf scars reveal ant-fungal parasitism". Biology Letters. 7 (1): 67–70. doi:10.1098/rsbl.2010.0521. PMC   3030878 . PMID   20719770.
  16. 1 2 Sobczak JF (2017). "The zombie ants parasitized by the fungi Ophiocordyceps camponotiatricipis (Hypocreales: Ophiocordycipitaceae): new occurrence and natural history". Mycosphere. 8 (9): 1261–1266. doi: 10.5943/mycosphere/8/9/1 .
  17. Doherty JF (October 2020). "When fiction becomes fact: exaggerating host manipulation by parasites". Proceedings. Biological Sciences. 287 (1936): 20201081. doi:10.1098/rspb.2020.1081. PMC   7657867 . PMID   33049168.
  18. "Rise of the zombie ants". www.natureindex.com. Retrieved 2021-01-19.
  19. 1 2 3 4 5 Zheng S, Loreto R, Smith P, Patterson A, Hughes D, Wang L (September 2019). "Specialist and Generalist Fungal Parasites Induce Distinct Biochemical Changes in the Mandible Muscles of Their Host". International Journal of Molecular Sciences. 20 (18): 4589. doi: 10.3390/ijms20184589 . PMC   6769763 . PMID   31533250.
  20. 1 2 3 4 5 de Bekker C, Merrow M, Hughes DP (July 2014). "From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.)". Integrative and Comparative Biology. 54 (2): 166–76. doi: 10.1093/icb/icu063 . PMID   24907198.
  21. Mangold, Colleen (17 July 2019). "Zombie ant death grip due to hypercontracted mandibular muscles". Journal of Experimental Biology. 222 (14): jeb200683. doi:10.1242/jeb.200683. PMC   6679347 . PMID   31315924.
  22. Hughes, David P.; Wappler, Torsten; Labandeira, Conrad C. (2011-02-23). "Ancient death-grip leaf scars reveal ant–fungal parasitism". Biology Letters. 7 (1): 67–70. doi:10.1098/rsbl.2010.0521. PMC   3030878 . PMID   20719770.
  23. 1 2 3 4 5 6 Pontoppidan MB, Himaman W, Hywel-Jones NL, Boomsma JJ, Hughes DP (12 March 2009). "Graveyards on the move: the spatio-temporal distribution of dead ophiocordyceps-infected ants". PLOS ONE. 4 (3): e4835. Bibcode:2009PLoSO...4.4835P. doi: 10.1371/journal.pone.0004835 . PMC   2652714 . PMID   19279680.
  24. Xiao JH, Zhong JJ (2007). "Secondary metabolites from Cordyceps species and their antitumor activity studies". Recent Patents on Biotechnology. 1 (2): 123–37. doi:10.2174/187220807780809454. PMID   19075836.
  25. Lu, Jennifer (April 18, 2019). "How a parasitic fungus turns ants into 'zombies'". National Geographic. Archived from the original on April 18, 2019. Retrieved December 24, 2022.
  26. Kittakoopa P, Punyaa J, Kongsaeree P, Lertwerawat Y, Jintasirikul A, Tanticharoena M, Thebtaranonth Y (1999). "Bioactive naphthoquinones from Cordyceps unilateralis". Phytochemistry. 52 (3): 453–457. doi:10.1016/S0031-9422(99)00272-1.
  27. Wongsa P, Tasanatai K, Watts P, Hywel-Jones N (August 2005). "Isolation and in vitro cultivation of the insect pathogenic fungus Cordyceps unilateralis". Mycological Research. 109 (Pt 8): 936–40. doi:10.1017/S0953756205003321. PMID   16175796.
  28. Amnuaykanjanasin A, Panchanawaporn S, Chutrakul C, Tanticharoen M (August 2011). "Genes differentially expressed under naphthoquinone-producing conditions in the entomopathogenic fungus Ophiocordyceps unilateralis". Canadian Journal of Microbiology. 57 (8): 680–92. doi:10.1139/W11-043. PMID   21823977.
  29. Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (April 2005). "Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869". Journal of Industrial Microbiology & Biotechnology. 32 (4): 135–40. doi:10.1007/s10295-005-0213-6. PMID   15891934. S2CID   22937549.
  30. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NL, Thebtaranonth Y (October 2005). "Bioactive substances from insect pathogenic fungi". Accounts of Chemical Research. 38 (10): 813–23. doi:10.1021/ar040247r. PMID   16231877.
  31. Wang Y, Enlai DA, Zhong JI (2013). "A Retrospective Analysis of Cordyceps Anti-Tuberculosis Capsule Combined with Chemotherapy for 614 Cases of Secondary Tuberculosis". Journal of Traditional Chinese Medicine. 15.
  32. Amnuaykanjanasin A, Phonghanpot S, Sengpanich N, Cheevadhanarak S, Tanticharoen M (June 2009). "Insect-specific polyketide synthases (PKSs), potential PKS-nonribosomal peptide synthetase hybrids, and novel PKS clades in tropical fungi". Applied and Environmental Microbiology. 75 (11): 3721–32. Bibcode:2009ApEnM..75.3721A. doi:10.1128/AEM.02744-08. PMC   2687288 . PMID   19346345.
  33. "The Zombie-Ant Fungus Is Under Attack, Research Reveals". Pennsylvania State University. 2012-05-02. Retrieved 2013-03-04.
  34. 1 2 3 4 5 Andersen SB, Ferrari M, Evans HC, Elliot SL, Boomsma JJ, Hughes DP (2 May 2012). "Disease dynamics in a specialized parasite of ant societies". PLOS ONE. 7 (5): e36352. Bibcode:2012PLoSO...736352A. doi: 10.1371/journal.pone.0036352 . PMC   3342268 . PMID   22567151.
  35. Parshall, Allison. "Could the Zombie Fungus in TV's The Last of Us Really Infect People?". Scientific American. Retrieved 2023-02-11.
  36. Geddes, Linda (10 February 2023). "'A growing threat to human health': we are ill-equipped for the dangers of fungal infections". The Guardian.

Further reading