Parvularia atlantis

Last updated

Parvularia atlantis
Parvularia atlantis (26639753359).jpg
Amoebal and cystic cells of Parvularia atlantis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Class: Cristidiscoidea
Order: Nucleariida
Genus: Parvularia
Species:
P. atlantis
Binomial name
Parvularia atlantis

Parvularia atlantis is a filopodiated amoeba which was isolated from a lake in Atlanta and deposited in the American Type Culture Collection (ATCC) under the name Nuclearia sp. ATCC 50694 on 1997 by TK Sawyer. It was classified under the genus Nuclearia and morphologically resembles to Nuclearia species, although it is smaller (the diameter of the cell body measures approximately 4 µm compared to Nuclearia species, which range between 9-60 µm). Later it was determined that it phylogenetically belongs to a new nucleariid lineage., [1] distantly related to Nuclearia and Fonticula genera – the other two previously described nucleriid genera.

Thus, Parvularia atlantis emerged as a new genus and a new species at the onset of Holomycota, which contain a set of phylogenetic and morphological characteristics that make this species unique. P. atlantis feeds on rod-shaped bacteria and present uni- or bi- nucleated cells. During its life cycle, P. atlantis can form spherical cystic cells which contain an embedded extracellular coat. P. atlantis is not the first case in which a filopodiated amoeba was misassigned to the Nuclearia genera. The amoeba Capsaspora owczarzaki was previously described as well as a Nuclearia, [2] until phylogenetic approaches placed Capsaspora outside Holomycota, within Holozoans. [3] [4] [5] [6] [7]

Its transcriptomic data is already available. [8] [9] [10]

Related Research Articles

<span class="mw-page-title-main">Nucleariida</span> Order of amoebae

Nucleariida is a group of amoebae with filose pseudopods, known mostly from soils and freshwater. They are distinguished from the superficially similar vampyrellids mainly by having mitochondria with discoid cristae, in the absence of superficial granules, and in the way they consume food.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Lobosa</span> Phylum of protozoans

Lobosa is a taxonomic group of amoebae in the phylum Amoebozoa. Most lobosans possess broad, bluntly rounded pseudopods, although one genus in the group, the recently discovered Sapocribrum, has slender and threadlike (filose) pseudopodia. In current classification schemes, Lobosa is a subphylum, composed mainly of amoebae that have lobose pseudopods but lack cilia or flagella.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Cristidiscoidea</span> Proposed basal holomycota clade

Cristidiscoidea or Nucleariae is a proposed basal holomycota clade in which Fonticula and Nucleariida emerged, as sister of the fungi. Since it is close to the divergence between the main lineages of fungi and animals, the study of Cristidiscoidea can provide crucial information on the divergent lifestyles of these groups and the evolution of opisthokonts and slime mold multicellularity. The holomycota tree is following Tedersoo et al.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

<i>Nuclearia</i>

Nuclearia is a nucleariid genus.

<i>Capsaspora</i> Single-celled eukaryote genus

Capsaspora is a monotypic genus containing the single species Capsaspora owczarzaki. C. owczarzaki is a single-celled eukaryote that occupies a key phylogenetic position in our understanding of the origin of animal multicellularity, as one of the closest unicellular relatives to animals. It is, together with Ministeria vibrans, a member of the Filasterea clade. This amoeboid protist has been pivotal to unravel the nature of the unicellular ancestor of animals, which has been proved to be much more complex than previously thought.

<i>Ministeria vibrans</i> Species of amoeba

Ministeria vibrans is a bacterivorous amoeba with filopodia that was originally described to be suspended by a flagellum-like stalk attached to the substrate. Molecular and experimental work later on demonstrated the stalk is indeed a flagellar apparatus.

<i>Breviata</i> Genus of flagellated amoebae

Breviata anathema is a single-celled flagellate amoeboid eukaryote, previously studied under the name Mastigamoeba invertens. The cell lacks mitochondria, much like the pelobionts to which the species was previously assigned, but has remnant mitochondrial genes, and possesses an organelle believed to be a modified anaerobic mitochondrion, similar to the mitosomes and hydrogenosomes found in other eukaryotes that live in low-oxygen environments.

<span class="mw-page-title-main">Testate amoebae</span>

Testate amoebae are a polyphyletic group of unicellular amoeboid protists, which differ from naked amoebae in the presence of a test that partially encloses the cell, with an aperture from which the pseudopodia emerge, that provides the amoeba with shelter from predators and environmental conditions.

<span class="mw-page-title-main">Filasterea</span> Basal Filozoan clade

Filasterea is a proposed basal Filozoan clade of single-celled ameboid eukaryotes that includes Ministeria and Capsaspora. It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared, originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with dozens of genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses.

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

<i>Trichosphaerium</i> Genus of amoebae

Trichosphaerium is a genus of amoebozoan protists that present extraordinary morphological transformations, both in size and shape, during their life cycle. They can present a test that may or may not be covered in spicules. They are related to the family Microcoryciidae, which contains other amoebae with tests, within the clade Corycidia of the phylum Amoebozoa.

<span class="mw-page-title-main">Apusomonadidae</span> Group of microorganisms with two flagella

The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Opisthosporidia</span> Clade of fungi

Opisthosporidia is a superphylum of intracellular parasites with amoeboid vegetative stage, defined as a common group of eukaryotic groups Microsporidia, Cryptomycota and Aphelidea. They have been considered to represent a monophyletic lineage with shared ecological and structural features, being a sister clade of the Fungi. Together with the Fungi they represent a sister clade of the Cristidiscoidea, together forming the Holomycota.

<i>Creolimax fragrantissima</i> Species of protist

Creolimax fragrantissima is a single-celled protist that occupies a key phylogenetic position to understand the origin of animals. It was isolated from the digestive tract of some marine invertebrates, mainly from the peanut worm, collected from the Northeast Pacific.

The Scotokaryotes (Cavalier-Smith) is a proposed basal Neokaryote clade as sister of the Diaphoretickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. In this phylogeny the Discoba are sometimes seen as paraphyletic and basal Eukaryotes.

<span class="mw-page-title-main">Amoeboflagellate</span> Cellular body type

An amoeboflagellate is any eukaryotic organism capable of behaving as an amoeba and as a flagellate at some point during their life cycle. Amoeboflagellates present both pseudopodia and at least one flagellum, often simultaneously.

References

  1. López-Escardó, David; López-García, Purificación; Moreira, David; Ruiz-Trillo, Iñaki; Torruella, Guifré (2017). "Parvularia atlantis gen. et sp. nov., a Nucleariid Filose Amoeba (Holomycota, Opisthokonta)". Journal of Eukaryotic Microbiology. 65 (2): 170–179. doi:10.1111/jeu.12450. ISSN   1550-7408. PMC   5708529 . PMID   28741861.
  2. Owczarzak, A.; Stibbs, H. H.; Bayne, C. J. (1980-01-01). "The destruction of Schistosoma mansoni mother sporocysts in vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructural study". Journal of Invertebrate Pathology. 35 (1): 26–33. doi:10.1016/0022-2011(80)90079-8. PMID   7365267.
  3. Zettler, Linda a. Amaral; Nerad, Thomas A.; O'kelly, Charles J.; Sogin, Mitchell L. (2001-05-01). "The Nucleariid Amoebae: More Protists at the Animal-Fungal Boundary". Journal of Eukaryotic Microbiology. 48 (3): 293–297. doi:10.1111/j.1550-7408.2001.tb00317.x. ISSN   1550-7408. PMID   11411837. S2CID   44548329.
  4. Hertel, Lynn A; Bayne, Christopher J; Loker, Eric S (2002-08-01). "The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea". International Journal for Parasitology. 32 (9): 1183–1191. doi:10.1016/S0020-7519(02)00066-8. PMID   12117501.
  5. Medina, Mónica; Collins, Allen G.; Taylor, John W.; Valentine, James W.; Lipps, Jere H.; Amaral-Zettler, Linda; Sogin, Mitchell L. (July 2003). "Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa". International Journal of Astrobiology. 2 (3): 203–211. Bibcode:2003IJAsB...2..203M. doi: 10.1017/S1473550403001551 . ISSN   1475-3006.
  6. Ruiz-Trillo, Iñaki; Inagaki, Yuji; Davis, Lesley A.; Sperstad, Sigmund; Landfald, Bjarne; Roger, Andrew J. (2004-11-23). "Capsaspora owczarzaki is an independent opisthokont lineage". Current Biology. 14 (22): R946–R947. doi: 10.1016/j.cub.2004.10.037 . PMID   15556849.
  7. Ruiz-Trillo, Iňaki; Lane, Christopher E.; Archibald, John M.; Roger, Andrew J. (2006-09-01). "Insights into the Evolutionary Origin and Genome Architecture of the Unicellular Opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica". Journal of Eukaryotic Microbiology. 53 (5): 379–384. doi:10.1111/j.1550-7408.2006.00118.x. ISSN   1550-7408. PMID   16968456. S2CID   24862220.
  8. Multicellgenome, Lab; Guifré, Torruella (2017-09-26). "Transcriptome - Parvularia atlantis (Nuclearia sp. ATCC 50694)". Figshare. doi:10.6084/m9.figshare.3898485.v4.
  9. Mendoza, Alex de; Sebé-Pedrós, Arnau; Šestak, Martin Sebastijan; Matejčić, Marija; Torruella, Guifré; Domazet-Lošo, Tomislav; Ruiz-Trillo, Iñaki (2013-12-10). "Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages". Proceedings of the National Academy of Sciences. 110 (50): E4858–E4866. Bibcode:2013PNAS..110E4858D. doi: 10.1073/pnas.1311818110 . ISSN   0027-8424. PMC   3864300 . PMID   24277850.
  10. Suga, Hiroshi; Torruella, Guifré; Burger, Gertraud; Brown, Matthew W.; Ruiz-Trillo, Iñaki (March 2014). "Earliest Holozoan expansion of phosphotyrosine signaling". Molecular Biology and Evolution. 31 (3): 517–528. doi:10.1093/molbev/mst241. ISSN   1537-1719. PMC   4342544 . PMID   24307687.