Pathosystem

Last updated

A pathosystem is a subsystem of an ecosystem and is defined by the phenomenon of parasitism. A plant pathosystem is one in which the host species is a plant. The parasite is any species in which the individual spends a significant part of its lifespan inhabiting one host individual and obtaining nutrients from it. The parasite may thus be an insect, mite, nematode, parasitic Angiosperm, fungus, bacterium, mycoplasma, virus or viroid. Other consumers, however, such as mammalian and avian herbivores, which graze populations of plants, are normally considered to be outside the conceptual boundaries of the plant pathosystem. [1]

Contents

A host has the property of resistance to a parasite. And a parasite has the property of parasitic ability on a host. Parasitism is the interaction of these two properties. The main feature of the pathosystem concept is that it concerns parasitism, and it is not concerned with the study of either the host or parasite on its own. Another feature of the pathosystem concept is that the parasitism is studied in terms of populations, at the higher levels and in ecologic aspects of the system. The pathosystem concept is also multidisciplinary. It brings together various crop science disciplines such as entomology, nematology, plant pathology, and plant breeding. It also applies to wild populations and to agricultural, horticultural, and forest crops, and to tropical, subtropical, as well as both subsistence and commercial farming.

In a wild plant pathosystem, both the host and the parasite populations exhibit genetic diversity and genetic flexibility. Conversely, in a crop pathosystem, the host population normally exhibits genetic uniformity and genetic inflexibility (i.e., clones, pure lines, hybrid varieties), and the parasite population assumes a comparable uniformity. This distinction means that a wild pathosystem can respond to selection pressures, but that a crop pathosystem does not. It also means that a system of locking (see below) can function in a wild plant pathosystem but not in a crop pathosystem.

Pathosystem balance means that the parasite does not endanger the survival of the host; and that the resistance in the host does not endanger the survival of the parasite. This is self-evident from the evolutionary survival of wild plant pathosystems, as systems, during periods of geological time. [2]

The gene-for-gene relationship [3] is an approximate botanical equivalent of antigens and antibodies in mammals. For each resistance gene in the host, there is a corresponding, or matching, gene in the parasite. When the genes of the parasite match those of the host, the resistance does not operate.

There are two kinds of resistance to parasites in plants:

Infection is the contact made by one parasite individual with one host individual for the purposes of parasitism. There are two kinds of infection:

An epidemic is the growth of a parasite population which is made at the expense of the host population. There are two kinds of epidemic:

Gene-for-gene relationship - the n/2 model

The n/2 model (pronounced either ‘en over two’ or 'half en') suggests the mode of operation of the gene-for-gene relationship in a wild plant pathosystem. [6] It apparently functions as a system of locking in which every host and parasite individual has half of the genes in the gene-for-gene relationship (i.e., n/2 genes, where n is the total number of pairs of genes in that relationship). Each gene in the host is the equivalent of a tumbler in a mechanical lock, and each gene in the parasite is the equivalent of a notch on a mechanical key. Provided that each n/2 combination of genes occurs with an equal frequency, and with a random distribution, in both the host and parasite populations, the frequency of matching allo-infections will be reduced to the minimum. For example, with six pairs of genes, each host and parasite individual would have three genes, and there would be twenty different locks and keys; with a twelve-gene system, there would be 924 six-gene locks and keys. Given an equal frequency and a random distribution of every lock and key, the frequency of matching allo-infection would be 1/20 and 1/924, respectively. These figures are obtained from the binomial expansion illustrated by Pascal's triangle. [7] [6]

This system of locking cannot function in a crop pathosystem in which the host population has genetic uniformity. A crop pathosystem is usually the equivalent of every door in the town having the same lock, and every householder having the same key which fits every lock. A system of locking is ruined by uniformity, and this is exactly what we have achieved when protecting our genetically uniform crops with vertical resistance. It also explains why vertical resistance is temporary resistance in agriculture. This type of error is called sub-optimization and it results from working at too low a systems level. The system of locking is an emergent property that is observable only at the systems level of the pathosystem. Comparable biological emergents are the schooling of fish, and the flocking of birds, which cannot be observed at any systems level below that of the population. The n/2 model is also the most important hypothesis to emanate from the concept of the pathosystem. [2] It can also be argued that the gene-for-gene relationship must function on a basis of heterogeneity in the wild pathosystem because the gross instability of the 'boom and bust' [4] of modern plant breeding would have no evolutionary survival value. [2]

A gene-for-gene relationship can evolve only in a discontinuous pathosystem. [1] This is because it functions as a system of locking. A matching allo-infection is the equivalent of a lock being unlocked. With the end of the season, all matched (i.e., unlocked) host tissues disappear. With the onset of a new growing season, all discontinuous host tissue (e.g., new leaves of a deciduous tree, newly germinated annual seedlings, or newly emerged tissue of a perennial herb) is unmatched and each host individual has a vertical resistance that is functioning. This is the equivalent of re-locking. This alternation of matching and non-matching (or unlocking and re-locking) is an essential feature of any system of locking, and it is possible only in a discontinuous pathosystem. Conversely, in a continuous pathosystem just one matching allo-infection on each host individual is required for that individual to be parasitised for the rest of its life which, in the case of some evergreen trees, may endure for centuries. A gene-for-gene relationship is useless in such a pathosystem and, consequently, it will not evolve.

Crops that are derived from a continuous wild pathosystem (e.g., aroids, banana, cassava, citrus, cocoa, coconut, date palm, ginger, mango, oil palm, olive, papaya, pineapple, pyrethrum, sisal, sugarcane, sweet potato, tea, turmeric, vanilla, yams) have no gene-for-gene relationships, not withstanding a few erroneous reports to the contrary.

Horizontal resistance

Horizontal resistance is the resistance that invariably remains after a matching allo-infection has occurred. [5] To postulate that horizontal resistance does not occur would be to postulate an absolute susceptibility. Such a level of susceptibility is experimentally unproved, and is theoretically impossible. Horizontal resistance is polygenically inherited and it can be exhibited at any level between its minimum and its maximum. Its maximum level should provide a virtually complete control of a parasite under conditions of maximum epidemiological competence. [2] Breeding for comprehensive horizontal resistance will require simultaneous quantitative improvements and will eventually control all the parasites that have epidemiological competence in a particular agro-ecosystem. [6] (5). However, because epidemiological competence is so variable, a cultivar that is in balance with one agro-ecosystem, is likely to be unbalanced in another agro-ecosystem, having too much resistance to some parasites and too little to others.

Of particular importance is the concept of parasite interference, first defined by Vanderplank, [8] who called it the cryptic error in field trials. Parasite interference does not affect the demonstration of vertical resistance, but it can totally destroy the evidence for high levels of horizontal resistance. [2] This factor, which has only recently been recognised, largely explains the almost total neglect of horizontal resistance during the twentieth century.

The greater the area of a uniform host population with a single vertical resistance, the more dangerous that resistance becomes. This is because of an increased selection pressure for the matching parasite, and an increased loss when the matching does occur. The greater the area of uniformity of vertical resistance, therefore, the greater the danger. [2] [4] Conversely, the greater the area of a uniform host population with high horizontal resistances, the more effective the horizontal resistance becomes. This is because parasite interference declines as the area of a horizontally resistant host population increases, and it is least when the entire crop of a region has a high level of horizontal resistance in all of its cultivars. The greater the area of uniformity of horizontal resistance, therefore, the greater the security. [2]

In breeding crop plants for horizontal resistance to their parasites, the disciplines of plant breeding, plant pathology, and crop entomology should be regarded as being amalgamated into a single discipline.

Related Research Articles

<span class="mw-page-title-main">Domestication</span> Selective breeding of plants and animals to serve humans

Domestication is a sustained multi-generational relationship in which humans assume a significant degree of control over the reproduction and care of another group of organisms to secure a more predictable supply of resources from that group. A broader biological definition is that it is a coevolutionary process that arises from a mutualism, in which one species constructs an environment where it actively manages both the survival and reproduction of another species in order to provide the former with resources and/or services. The domestication of plants and animals by humans was a major cultural innovation ranked in importance with the conquest of fire, the manufacturing of tools, and the development of verbal language.

<span class="mw-page-title-main">Plant pathology</span> Scientific study of plant diseases

Plant pathology is the scientific study of diseases in plants caused by pathogens and environmental conditions. Organisms that cause infectious disease include fungi, oomycetes, bacteria, viruses, viroids, virus-like organisms, phytoplasmas, protozoa, nematodes and parasitic plants. Not included are ectoparasites like insects, mites, vertebrate, or other pests that affect plant health by eating plant tissues. Plant pathology also involves the study of pathogen identification, disease etiology, disease cycles, economic impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases.

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<i>Blumeria graminis</i> Fungal pathogen of wheat, barley, rye...

Blumeria graminis is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and Oidium monilioides or Oidium tritici.

Clayton Oscar Person, was recognized internationally as an authority on the genetics of host-parasite relations. He was born and raised in Aylesbury, Saskatchewan, Canada and died in Vancouver, British Columbia, Canada. His writings have made a major contribution to the development of a rigorous theoretical basis for our understanding of how the genetic structure of parasitic populations interacts with that of their host populations. This was known as the gene-for-gene relationship. His theoretical methods have been applied widely in the practical management of parasitic diseases in agriculture and forestry.

Raoul A. Robinson was a Canadian/British plant scientist with more than forty years of wide-ranging global experience in crop improvement for both commercial and subsistence agriculture. He is best known for his application of system theory to crop pathosystems and the elucidation of the concepts of horizontal and vertical resistance and their implication on breeding for durable resistance.

The gene-for-gene relationship was discovered by Harold Henry Flor who was working with rust (Melampsora lini) of flax (Linum usitatissimum). Flor showed that the inheritance of both resistance in the host and parasite ability to cause disease is controlled by pairs of matching genes. One is a plant gene called the resistance (R) gene. The other is a parasite gene called the avirulence (Avr) gene. Plants producing a specific R gene product are resistant towards a pathogen that produces the corresponding Avr gene product. Gene-for-gene relationships are a widespread and very important aspect of plant disease resistance. Another example can be seen with Lactuca serriola versus Bremia lactucae.

The term vertical resistance, used commonly in context of plant selection, was first used by J.E. Vanderplank to describe single-gene resistance. This contrasted the term horizontal resistance which was used to describe many-gene resistance. Raoul A. Robinson further refined the definition of vertical resistance, emphasizing that in vertical resistance there are single genes for resistance in the host plant, and there are also single genes for parasitic ability in the parasite. This phenomenon is known as the gene-for-gene relationship, and it is the defining character of vertical resistance.

In genetics, the term horizontal resistance was first used by J.E. Vanderplank to describe many-gene resistance, which is sometimes also called generalized resistance. This contrasts with the term vertical resistance which was used to describe single-gene resistance. Raoul A. Robinson further refined the definition of horizontal resistance. Unlike vertical resistance and parasitic ability, horizontal resistance and horizontal parasitic ability are entirely independent of each other in genetic terms.

This is a glossary of some of the terms used in phytopathology.

<i>Thielaviopsis basicola</i> Species of fungus

Thielaviopsis basicola is the plant-pathogen fungus responsible for black root rot disease. This particular disease has a large host range, affecting woody ornamentals, herbaceous ornamentals, agronomic crops, and even vegetable crops. Examples of susceptible hosts include petunia, pansy, poinsettia, tobacco, cotton, carrot, lettuce, tomato, and others. Symptoms of this disease resemble nutrient deficiency but are truly a result of the decaying root systems of plants. Common symptoms include chlorotic lower foliage, yellowing of plant, stunting or wilting, and black lesions along the roots. The lesions along the roots may appear red at first, getting darker and turning black as the disease progresses. Black root lesions that begin in the middle of a root can also spread further along the roots in either direction. Due to the nature of the pathogen, the disease can easily be identified by the black lesions along the roots, especially when compared to healthy roots. The black lesions that appear along the roots are a result of the formation of chlamydospores, resting spores of the fungus that contribute to its pathogenicity. The chlamydospores are a dark brown-black color and cause the "discoloration" of the roots when they are produced in large amounts.

Genetic erosion is a process where the limited gene pool of an endangered species diminishes even more when reproductive individuals die off before reproducing with others in their endangered low population. The term is sometimes used in a narrow sense, such as when describing the loss of particular alleles or genes, as well as being used more broadly, as when referring to the loss of a phenotype or whole species.

Resistance genes (R-Genes) are genes in plant genomes that convey plant disease resistance against pathogens by producing R proteins. The main class of R-genes consist of a nucleotide binding domain (NB) and a leucine rich repeat (LRR) domain(s) and are often referred to as (NB-LRR) R-genes or NLRs. Generally, the NB domain binds either ATP/ADP or GTP/GDP. The LRR domain is often involved in protein-protein interactions as well as ligand binding. NB-LRR R-genes can be further subdivided into toll interleukin 1 receptor (TIR-NB-LRR) and coiled-coil (CC-NB-LRR).

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

<span class="mw-page-title-main">Host–parasite coevolution</span> Mutually adaptive genetic change of a host and a parasite

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

<span class="mw-page-title-main">Evolving digital ecological network</span>

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

The Vertifolia effect is a well documented phenomenon in the fields of plant breeding and plant pathology. It is characterized by the erosion of a crop’s horizontal resistance to disease during a breeding cycle due to the presence of strong vertical resistance, characterized by the presence of R genes. This effect was observed in late blight of potato. This phenomenon was first described by J.E. Van der Plank in his 1963 book Plant Disease: Epidemics and Control. Van der Plank observed that under artificial selection the potato variety Vertifolia had stronger vertical resistance to the potato late blight pathogen, Phytophthora infestans, as measured by the presence of specific R genes. However, when the pathogen overcame these R genes Vertifolia exhibited a greater loss of horizontal resistance than varieties with fewer R genes and lower vertical resistance. This effect suggests that when a pathogen evolves an avirulence gene to counteract a variety’s R gene, that variety will be more susceptible to the pathogen than other varieties.

<span class="mw-page-title-main">Gene-for-gene interactions in rust fungi</span>

The study of gene-for-gene interactions uncovers genetic components, evolutionary impacts, and ecological/economic implications between rust fungi and plants. Rust fungi utilize the gene-for-gene interaction to invade host plants. Conversely, host plants utilize the gene-for-gene interaction to prevent invasion of rust fungi.

<span class="mw-page-title-main">Dieter Ebert</span>

Dieter Ebert is professor for Zoology and Evolutionary Biology at the Zoological Institute at the University of Basel in Basel, Switzerland. He is an evolutionary ecologist and geneticist, known for his research on host–pathogen interaction and coevolution, mainly using the model system Daphnia and its parasites.

References

  1. 1 2 3 4 Robinson, Raoul A. (1987) Host Management in Crop Pathosystems. Macmillan, New York, Collier-Macmillan, London, 263pp
  2. 1 2 3 4 5 6 7 Robinson, R.A.(2010) Self-Organizing Agro-Ecosystems; Sharebooks Publishing http://www.sharebookspublishing.com
  3. Flor, H.H. (1942); “Inheritance of pathogenicity in Melampsora lini.” Phytopath., 32; 653-669.
  4. 1 2 3 4 5 Vanderplank, J.E. (1963); “Plant Diseases; Epidemics and Control.” Academic Press, New York & London, 349pp.
  5. 1 2 3 Robinson, R.A. (1976); “Plant Pathosystems.” Springer-Verlag, Berlin, Heidelberg, New York, 184pp.
  6. 1 2 3 Robinson, R.A. (1996) Return to Resistance; Breeding Plants to Reduce Pesticide Dependence”. agAccess, Davis, California, 480pp.
  7. Person, C.O. (1959); “Gene-for-gene relationships in host-parasite systems.” Can. J. Bot. 37; 1101-1130.
  8. Vanderplank, J.E. (1968); “Disease Resistance in Plants.” Academic Press, New York & London, 206pp.