Physoderma

Last updated

Physoderma
Physoderma pulposum on Chenopodium (24940605627).jpg
Physoderma pulposum on Chenopodium
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Blastocladiomycota
Class: Physodermatomycetes
Order: Physodermatales
Family: Physodermataceae
Genus: Physoderma
Wallr. (1833)
Type species
Physoderma maculare (1833)
Wallr. (1833) [1]
Synonyms [2]

Physoderma is a genus of chytrid fungi. Described by German botanist Karl Friedrich Wilhelm Wallroth in 1833, the genus contains some species that are parasitic on vascular plants, including P. alfalfae and P. maydis , causative agents of crown wart of alfalfa and brown spot of corn, respectively. [3] Of the chytrid genera, Physoderma is the oldest. [4] However, species were confused with the rust fungi, the genus Synchytrium , and the genus Protomyces of Ascomycota. [5] Members of Physoderma are obligate parasites of pteridophytes and angiosperms. [4] There are approximately 80 species within this genus (depending on whether one includes those traditionally belonging to Urophlyctis ). [5]

Contents

Taxonomic history

The genus was erected in 1833 on the basis of resting spore development. [4] [5] and included 6 species. [6] Unfortunately, his original diagnosis was very similar to that of Protomyces , which led others to place species in the wrong genus. In 1877, Nowakowski erected the genus Cladochytrium in the Chytridiales, which led to the transfer of Physoderma to the Chytridiales as well [6] by Schroeter in 1883. [4] Just prior to that (1882), Schroeter added an additional 4 species to the genus and noted, for the first time, epibiotic, ephemeral zoosporangia. He also claimed that sexual reproduction was through the fusion of two cells and resulted in the resting spores. In 1889, Schroeter created the genus Urophlyctis for those species with epibiotic, ephemeral zoosporangia and sexually derived resting spores. He placed both in the same subfamily as Cladochytrium . In 1891, Fischer refuted Schroeter's observations on sexual reproduction and merged Physoderma and Urophlyctis with Cladochytrium . In 1897, Schroeter separated them once more. Magnus, in 1901, used characteristics of the resting spore and host plant reaction to distinguish between Physoderma and Urophlyctis . He claimed that resting spores from Physoderma were globose and ellipsoidal, and those from Urophlyctis were flattened on one side. Physoderma species cause discoloration and slight malformation, while Urophlycits cause significant malformation and hypertrophy. Sparrow, in numerous publications, expressed concerns over the characters used to distinguish the two genera. [6] In 1943, Sparrow suggested that the genus be merged with Urophlyctis , which was done by Karling in 1950. [4] [5] He also moved Physoderma to its own family, the Physodermataceae. [6] Sparrow, in 1962, decided the genera were distinct based on morphology and host reaction. However, at this time, the two genera are considered synonymous. [7] Typically, it was thought that Physoderma was related to the polycentric genera Cladochytrium and Nowakowskiella [4] [5] Based on the ultrastructure of the zoospore, it was realized that Physoderma belongs to the Blastocladiales, [7] which later became the Blastocladiomycota. [8] Recent phylogenetic analyses indicate that Physoderma and Urophlycits might be separate genera. [7]

Morphology & life cycle

Physoderma species are characterized as having a both a monocentric thallus and an endobiotic polycentric thallus. Resting spores germinate in the spring to produce zoospores that will infect the host. The initial infection gives rise to monocentric, epibiotic zoosporangium anchored with endobiotic rhizoids confined to a single host cell. The zoosporangium has been characterized as Rhizidium or Phlyctochytrium like; it usually has discharge papilla through which the zoospores are released. (Physoderma is considered operculate, though some species once in Urophlyctis appear to be inoperculate.) The liberated zoospores infect new host cells, and in this fashion, an infection can go through several generations. As well, the sporangia are internally proliferous; that is, they can produce a second round of zoospores after releasing the first one. In late spring and summer, the zoospores will begin to develop into an endobiotic polycentric thallus. This thallus is often extensive, infecting many host cells, with highly branched, fine rhizoids. These rhizoids can bear intercalary cells, which many be once or twice septate (and what Schroeter saw as evidence of sexual reproduction). The endobiotic thallus gives rise to large, thick-walled, dark-colored resting spores that take the shape of the host cell. It appears the resting spores are formed from the intercalary cells. These resting spores will over winter and germinate in the spring. [4] [6]

Ecology

Many species of Physoderma infect marsh plants, and several are confined to the submerged portion of hosts. [4] Infections are usually confined to the leaves and stems, or, less commonly, the petioles of the host plants; however, there are some species that also or specifically infect parts of the flower. A notable example is Physoderma deformans; it infects the flower of two species of Anemone . A curious side effect, flowers infected with P. deformans live longer than non-infected flowers. There is at least one known species that infects the roots of the host plant rather than the above-ground parts. Infections can cause discoloration, warts, or galls. [6] Physoderma species can be highly specific in both host choice and area of infection. An example is P. dulichii, which only infects the upper epidermal cells on young leaves of Dulichium arundinaceum . [9] Another example are two species that infect Sium suave: one infects only the submerged portion of the plant, the other only infects the emergent portion of the plant, but they can be found growing on the same plant. [10] Due to their reliance on zoospores, Physoderma species require free water. As an example, P. dulichii requires at least an inch of standing water to initiate the infection of a host plant. Once the plant is infected, however, high humidity, dew, or rain is sufficient to keep the infection going through the growing season. [9]

Species

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Chytridiomycota</span> Division of fungi

Chytridiomycota are a division of zoosporic organisms in the kingdom Fungi, informally known as chytrids. The name is derived from the Ancient Greek χυτρίδιον, meaning "little pot", describing the structure containing unreleased zoospores. Chytrids are one of the earliest diverging fungal lineages, and their membership in kingdom Fungi is demonstrated with chitin cell walls, a posterior whiplash flagellum, absorptive nutrition, use of glycogen as an energy storage compound, and synthesis of lysine by the α-amino adipic acid (AAA) pathway.

<span class="mw-page-title-main">Oomycete</span> Fungus-like eukaryotic microorganism

The Oomycetes, or Oomycota, form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms within the Stramenopiles. They are filamentous and heterotrophic, and can reproduce both sexually and asexually. Sexual reproduction of an oospore is the result of contact between hyphae of male antheridia and female oogonia; these spores can overwinter and are known as resting spores. Asexual reproduction involves the formation of chlamydospores and sporangia, producing motile zoospores. Oomycetes occupy both saprophytic and pathogenic lifestyles, and include some of the most notorious pathogens of plants, causing devastating diseases such as late blight of potato and sudden oak death. One oomycete, the mycoparasite Pythium oligandrum, is used for biocontrol, attacking plant pathogenic fungi. The oomycetes are also often referred to as water molds, although the water-preferring nature which led to that name is not true of most species, which are terrestrial pathogens.

<i>Synchytrium endobioticum</i> Species of fungus

Synchytrium endobioticum is a chytrid fungus that causes the potato wart disease, or black scab. It also infects some other plants of the genus Solanum, though potato is the only cultivated host.

<span class="mw-page-title-main">Powdery scab</span> Disease of potatoes

Powdery scab is a disease of potato tubers. It is caused by the cercozoan Spongospora subterranea f. sp. subterranea and is widespread in potato growing countries. Symptoms of powdery scab include small lesions in the early stages of the disease, progressing to raised pustules containing a powdery mass. These can eventually rupture within the tuber periderm. The powdery pustules contain resting spores that release anisokont zoospores to infect the root hairs of potatoes or tomatoes. Powdery scab is a cosmetic defect on tubers, which can result in the rejection of these potatoes. Potatoes which have been infected can be peeled to remove the infected skin and the remaining inside of the potato can be cooked and eaten.

<span class="mw-page-title-main">Chytridiales</span> Order of fungi

Fungi of the order Chytridiales, like other members of its division, may either have a monocentric thallus or a polycentric rhizomycelium. When the ribosomal genes of members classified in this order were first examined using molecular techniques, it was discovered that the order contained some species that were not related. With the culture and characterization of Chytridium olla, the type species of this order, the limits of the Chytridiales were established. The Chytridiales is now monophyletic and species such as Polychytrium aggregatum, Chytriomyces angularis and Cladochytrium replicatum have been transferred to other orders.

<span class="mw-page-title-main">Rhizophydiales</span> Order of fungi

Rhizophydiales are an important group of chytrid fungi. They are found in soil as well as marine and fresh water habitats where they function as parasites and decomposers.

<span class="mw-page-title-main">Blastocladiomycota</span> Phylum of flagellated fungi

Blastocladiomycota is one of the currently recognized phyla within the kingdom Fungi. Blastocladiomycota was originally the order Blastocladiales within the phylum Chytridiomycota until molecular and zoospore ultrastructural characters were used to demonstrate it was not monophyletic with Chytridiomycota. The order was first erected by Petersen for a single genus, Blastocladia, which was originally considered a member of the oomycetes. Accordingly, members of Blastocladiomycota are often referred to colloquially as "chytrids." However, some feel "chytrid" should refer only to members of Chytridiomycota. Thus, members of Blastocladiomyota are commonly called "blastoclads" by mycologists. Alternatively, members of Blastocladiomycota, Chytridiomycota, and Neocallimastigomycota lumped together as the zoosporic true fungi. Blastocladiomycota contains 5 families and approximately 12 genera. This early diverging branch of kingdom Fungi is the first to exhibit alternation of generations. As well, two (once) popular model organisms—Allomyces macrogynus and Blastocladiella emersonii—belong to this phylum.

Salmacisia is a fungal genus in the family Tilletiaceae. It is a monotypic genus, containing the single species Salmacisia buchloëana, first described as Tilletia buchloëana in 1889, and renamed in 2008. Plants infected by the fungus undergo a phenomenon known as "parasitically induced hermaphroditism", whereby ovary development is induced in otherwise male plants. Because of the pistil-inducing effects of the fungus, the authors have named the species pistil smut; it is the only species in the order Tilletiales known to have hermaphroditic effects.

<i>Rozella</i> Genus of fungi

Rozella is a fungal genus of obligate endoparasites of a variety of hosts, including Oomycota, Chytridiomycota, and Blastocladiomycota. Rozella was circumscribed by French mycologist Marie Maxime Cornu in 1872. Considered one of the earliest diverging lineages of fungi, the widespread genus contains 27 species, with the most well studied being Rozella allomycis. Rozella is a member of a large clade of fungi referred to as the Cryptomycota/Rozellomycota. While some can be maintained in dual culture with the host, most have not been cultured, but they have been detected, using molecular techniques, in soil samples, and in freshwater and marine ecosystems. Zoospores have been observed, along with cysts, and the cells of some species are attached to diatoms.

<i>Synchytrium</i> Genus of fungi

Synchytrium is a large genus of plant pathogens within the phylum Chytridiomycota. Species are commonly known as false rust or wart disease. Approximately 200 species are described, and all are obligate parasites of angiosperms, ferns, or mosses. Early species were mistakenly classified among the higher fungi because of their superficial similarity to the rust fungi. Anton de Bary and Mikhail S. Woronin recognized the true nature of these fungi and established the genus to accommodate Synchytrium taraxaci, which grows on dandelions, and S. succisae, which grows on Succisa pratensis. Synchytrium taraxaci is the type of the genus. The genus has been divided into 6 subgenera based on differences in life cycles.

Olpidium is a fungal genus in the family Olpidiaceae. Members of Olpidium are zoosporic pathogens of plants, animals, fungi, and oomycetes.

<i>Allomyces</i> Genus of fungi

Allomyces is a genus of fungi in the family Blastocladiaceae. It was circumscribed by British mycologist Edwin John Butler in 1911. Species in the genus have a polycentric thallus and reproduce sexually or asexually by zoospores that have a whiplash-like flagella. They are mostly isolated from soils in tropical countries, commonly in ponds, rice fields, and slow-moving rivers.

Neocallimastix patriciarum is a species of fungus that lives in the rumen of sheep and other ruminant species. N. patriciarum is an obligate anaerobe and is an important component of the microbial population within the rumen. Only one of a few rumen fungi, this species is interesting and unique within the fungal world. Originally thought to be a flagellate protists, species within the phylum Neocallimastigomycota were first recognized as a fungus by Colin Orpin in 1975 when he demonstrated that they had cell walls of chitin

<i>Chytriomyces</i> Genus of fungi

Chytriomyces is the type genus of fungi in the family Chytriomycetaceae. The genus was described by mycologist John Sidney Karling in 1945. The family, created by Peter Letcher in 2011, contains species with a Group I-type zoospore, distinguishing it from Chytridiaceae members, which have a Group II-type zoospore.

Frederick Kroeber Sparrow was an American mycologist. He was known for his research on aquatic fungi, and in particular the genus Physoderma, and he produced a well-received monograph in 1943 titled The Aquatic Phycomycetes Exclusive of the Saprolegniacea and Pythium; this was republished in 1960 as Aquatic Phycomycetes.

Dendrochytridium is a fungal genus in the order Chytridiales. The genus is monotypic, containing the single saprobic species Dendrochytridium crassum, isolated from detritus collected from an Australian tree canopy. Both the genus and species were described as new to science in 2013. Phylogenetically, Dendrochytridium crassum groups together in a clade with other fungi possessing Group II-type zoospores. These fungi, which include representatives from the genera Chytridium, Phlyctochytrium, Chytriomyces, and Polyphlyctis are classified in the family Chytridiaceae.

Globisporangium sylvaticum is a plant pathogen, an oomycete known to cause root rot and damping off in a multitude of species. These species include apples, carrot, cherry laurel, cress, cucumber, garlic, lettuce, pea, rhododendron, and spinach. Symptoms of infection include stunting, wilt, chlorosis, and browning and eventual necrosis of roots. The pathogen can by identified by the presence of thick, microscopic, round spores within the cells of the root.

<span class="mw-page-title-main">Physodermataceae</span> Family of fungi

Physodermatacae is a family of chytrid fungi in the order Physodermatales. Species in the family have a parasitic relationship with the host's physoderma. This family is distinctive in that it contains a thick wall around the sporangia to resist against unfavorable conditions. Sporangia releases from a host plant when rotting, dispersal is carried through the air. This family is not to be confused or related to basidiomycetes rusts and smut fungi. This parasite is distributed all across the world in aquatic, semi aquatic wetlands and in some ferns.

<i>Aphelidium tribonemae</i>

Aphelidium tribonemae is a species within the Aphelid group. Their classification in the kingdom Fungi is a subject of controversy. Some argue for the classification of aphelids as ‘fungal animals', and for a period of time in the 1950s, aphids were classified as protists due to their amoeboid stage. Recently, molecular phylogenetics placed the aphelids within Opisthosporidia, a super phylum within Opisthokonta. Aphelids have posterior uniflagellate zoospores which place them as Opisthokonts. They are an early diverging lineage in Kingdom Fungi. While the aphelid group only contains three genera, it spans many both freshwater and marine ecosystems.

References

  1. Wallroth KFW. (1833). Flora Cryptogamica Germaniae (in German). Vol. 2. Nürnberg, Germany: J.L. Schrag. p. 192.
  2. "Synonymy: Physoderma Wallr., Fl. crypt. Germ. (Norimbergae) 2: 192 (1833)". Species Fungorum. CAB International. Retrieved 27 March 2014.
  3. Schaechter M. (2011). Eukaryotic Microbes. Academic Press. p. 116. ISBN   978-0-12-383877-3.
  4. 1 2 3 4 5 6 7 8 Sparrow FK. 1960. Aquatic phycomycetes. 2nd ed. Ann Arbor, Michigan: University of Michigan Press.
  5. 1 2 3 4 5 Karling, J.S. 1977. Chytridiomycetarum Iconographia. Monticello, New York: Lubrecht & Cramer.
  6. 1 2 3 4 5 6 Karling, J.S. 1950. The genus Physoderma (Chytridiales). Llyodia. 13(1): 29.
  7. 1 2 3 Porter TM, W Martin, TY James, JE Longcore, FH Gleason, PH Adler, PM Letcher, & R Vilgalys. 2011. Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biology 115: 381–392.
  8. James, T.Y.; et al. (2006). "A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota)". Mycologia. 98 (6): 860–871. doi:10.3852/mycologia.98.6.860. PMID   17486963.
  9. 1 2 Johns RM. 1966. Morphological and ecological study of Physoderma dulichii. American Journal of Botany 53(1):34–45.
  10. Sparrow FK. 1979. Observations on chytridiaceous parasites of phanerograms XXVIII Physodermas on Sium suave. Mycologia 72(2):423–433

Physoderma in Index Fungorum