Plakohypaphorine

Last updated

Plakohypaphorines are halogenated indolic non-proteinogenic amino acids named for their similarity to hypaphorine (N,N,N-trimethyltryptophan). First reported in the Caribbean sponge Plakortis simplex in 2003, plakohypaphorines A-C were the first iodine-containing indoles to be discovered in nature. Plakohypaphorines D-F, also found in P. simplex, were reported in 2004 by a group including the researchers who discovered the original plakohypaphorines.

Plakohypaphorine Chemical name Chemical formula SMILES Image
Plakohypaphorine7-Iodo-N,N,N-trimethyltryptophanC14H17IN2O2OC(=O)C(N(C)(C)C)Cc2cnc1c2cccc1I Plakohypaphorine A.svg
Plakohypaphorine B6,7-Diiodo-N,N,N-trimethyltryptophanC14H16I2N2O2OC(=O)C(N(C)(C)C)Cc2cnc1c2ccc(I)c1I Plakohypaphorine B.svg
Plakohypaphorine C5,7-Diiodo-N,N,N-trimethyltryptophanC14H16I2N2O2CN(C)(C)C(C(=O)O)Cc2cnc1c2cc(I)cc1I Plakohypaphorine C.svg
Plakohypaphorine D5,6-Diiodo-N,N,N-trimethyltryptophanC14H16I2N2O2Ic2cc1c(cc2I)ncc1CC(C(O)=O)N(C)(C)C Plakohypaphorine D.svg
Plakohypaphorine E5,6,7-Triiodo-N,N,N-trimethyltryptophanC14H15I3N2O2CN(C)(C)C(C(=O)O)Cc1cnc(c(I)c2I)c1cc2I Plakohypaphorine E.svg
Plakohypaphorine F6-Chloro-5-iodo-N,N,N-trimethyltryptophanC14H16ClIN2O2Clc2c1ncc(CC(C(O)=O)N(C)(C)C)c1cc(I)c2 Plakohypaphorine F.svg

Related Research Articles

<span class="mw-page-title-main">Iodine</span> Chemical element, symbol I and atomic number 53

Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at 114 °C (237 °F), and boils to a violet gas at 184 °C (363 °F). The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης 'violet-coloured'.

β-Carboline Chemical compound also known as norharmane

β-Carboline (9H-pyrido[3,4-b]indole) represents the basic chemical structure for more than one hundred alkaloids and synthetic compounds. The effects of these substances depend on their respective substituent. Natural β-carbolines primarily influence brain functions but can also exhibit antioxidant effects. Synthetically designed β-carboline derivatives have recently been shown to have neuroprotective, cognitive enhancing and anti-cancer properties.

In organic chemistry, Madelung synthesis is a chemical reaction that produces indoles by the intramolecular cyclization of N-phenylamides using strong base at high temperature. The Madelung synthesis was reported in 1912 by Walter Madelung, when he observed that 2-phenylindole was synthesized using N-benzoyl-o-toluidine and two equivalents of sodium ethoxide in a heated, airless reaction. Common reaction conditions include use of sodium or potassium alkoxide as base in hexane or tetrahydrofuran solvents, at temperatures ranging between 200–400 °C. A hydrolysis step is also required in the synthesis. The Madelung synthesis is important because it is one of few known reactions that produce indoles from a base-catalyzed thermal cyclization of N-acyl-o-toluidines.

<span class="mw-page-title-main">2-Imidazoline</span> Chemical compound

2-Imidazoline (Preferred IUPAC name: 4,5-dihydro-1H-imidazole) is one of three isomers of the nitrogen-containing heterocycle imidazoline, with the formula C3H6N2. The 2-imidazolines are the most common imidazolines commercially, as the ring exists in some natural products and some pharmaceuticals. They also have been examined in the context of organic synthesis, coordination chemistry, and homogeneous catalysis.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

<span class="mw-page-title-main">Ajmaline</span> Chemical compound

Ajmaline is an alkaloid that is classified as a 1-A antiarrhythmic agent. It is often used to induce arrhythmic contraction in patients suspected of having Brugada syndrome. Individuals suffering from Brugada syndrome will be more susceptible to the arrhythmogenic effects of the drug, and this can be observed on an electrocardiogram as an ST elevation.

<span class="mw-page-title-main">Isoindole</span> Chemical compound

In organic chemistry and heterocyclic chemistry, isoindole consists of a benzene ring fused with pyrrole. The compound is an isomer of indole. Its reduced form is isoindoline. The parent isoindole is a rarely encountered in the technical literature, but substituted derivatives are useful commercially and occur naturally. Isoindoles units occur in phthalocyanines, an important family of dyes. Some alkaloids containing isoindole have been isolated and characterized.

<span class="mw-page-title-main">5-Bromo-DMT</span> Chemical compound

5-Bromo-DMT (5-bromo-N,N-dimethyltryptamine) is a psychedelic brominated indole alkaloid found in the sponges Smenospongia aurea and Smenospongia echina, as well as in Verongula rigida alongside 5,6-Dibromo-DMT and seven other alkaloids. It is the 5-bromo derivative of DMT, a psychedelic found in many plants and animals.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Chemical compound

7-Hydroxymitragynine is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It is often referred to as ‘7-OH’. It was first described in 1994 and is a natural product derived from the mitragynine present in the kratom leaf. It is considered an oxidized derivative and active metabolite of mitragynine. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater potency and contributes heavily to the analgesic activity of mitragynine as a metabolite.

<span class="mw-page-title-main">Yuehchukene</span> Chemical compound

Yuehchukene is a dimeric indole alkaloid natural product that possesses anti-fertility and estrogenic activities. Yuehchukene is isolated from the roots of Murraya paniculata and other species of the plant genus Murraya. Its natural abundance is in the range of 10-52 ppm.

Organoiodine chemistry is the study of the synthesis and properties of organoiodine compounds, or organoiodides, organic compounds that contain one or more carbon–iodine bonds. They occur widely in organic chemistry, but are relatively rare in nature. The thyroxine hormones are organoiodine compounds that are required for health and the reason for government-mandated iodization of salt.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">Akuammicine</span> Alkaloid

Akuammicine is a monoterpene indole alkaloid of the Vinca sub-group. It is found in the Apocynaceae family of plants including Picralima nitida, Vinca minor and the Aspidosperma.

<span class="mw-page-title-main">Plakoridine A</span> Chemical compound

Plakoridine A is an alkaloid isolated from the marine sponge Plakortis sp. There are three plakoridines known, named plakoridine A, B, and C.

<span class="mw-page-title-main">Apparicine</span> Chemical compound

Apparicine is a monoterpenoid indole alkaloid. It is named after Apparicio Duarte, a Brazilian botanist who studied the Aspidosperma species from which apparicine was first isolated. It was the first member of the vallesamine group of alkaloids to be isolated and have its structure established, which was first published in 1965. It has also been known by the synonyms gomezine, pericalline, and tabernoschizine.

<span class="mw-page-title-main">Tabernaemontanine</span> Chemical compound

Tabernaemontanine is a naturally occurring monoterpene indole alkaloid found in several species in the genus Tabernaemontana including Tabernaemontana divaricata.

<span class="mw-page-title-main">Conophylline</span> Chemical compound

Conophylline is a autophagy inducing vinca alkaloid found in several species of Tabernaemontana including Ervatamia microphylla and Tabernaemontana divaricata. Among its many functional groups is an epoxide: the compound where that ring is replaced with a double bond is called conophyllidine and this co-occurs in the same plants.

<span class="mw-page-title-main">Vinervine</span> Vinca alkaloid

Vinervine is a monoterpene indole alkaloid of the Vinca sub-group. It is a derivative of akuammicine, with one additional hydroxy (OH) group in the indole portion, hence it is also known as 12-hydroxyakuammicine.

<span class="mw-page-title-main">Fascaplysin</span> Chemical compound

Fascaplysin is a marine alkaloid based on 12H-pyrido[1–2-a:3,4-b′]diindole ring system. It was first isolated as a red pigment from the marine sponge Fascaplysinopsis bergquist collected in the South Pacific near Fiji in 1988. Fascaplysin possesses a broad range of in vitro biological activities including analgesic, antimicrobial, antifungal, antiviral, antimalarial, anti-angiogenic, and antiproliferative activity against numerous cancer cell lines.

<i>Plakortis</i> Genus of sponges

Plakortis is a genus of marine sponges in the order Homosclerophorida, first described by Franz Eilhard Schulze in 1880.

References