N-Methyl-N-ethyltryptamine

Last updated
N-Methyl-N-ethyltryptamine
MET image.svg
Names
Preferred IUPAC name
N-Ethyl-2-(1H-indol-3-yl)-N-methylethan-1-amine
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C13H18N2/c1-3-15(2)9-8-11-10-14-13-7-5-4-6-12(11)13/h4-7,10,14H,3,8-9H2,1-2H3 Yes check.svgY
    Key: MYEGVMLMDWYPOA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C13H18N2/c1-3-15(2)9-8-11-10-14-13-7-5-4-6-12(11)13/h4-7,10,14H,3,8-9H2,1-2H3
    Key: MYEGVMLMDWYPOA-UHFFFAOYAX
  • c1cccc2c1c(c[nH]2)CCN(CC)C
Properties
C13H18N2
Molar mass 202.295 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

N-Methyl-N-ethyltryptamine (MET) is a psychedelic tryptamine. It is closely related to DMT and DET. [1] [2] The Lysergamide counterpart of MET is ETH-LAD, an analogue of LSD first developed and characterized by Alexander Shulgin.

There is very little information on the human pharmacology or toxicity of MET. The freebase is believed to be active via vaporization at 15 mg. [3]

Related Research Articles

<span class="mw-page-title-main">Psychedelic drug</span> Hallucinogenic class of psychoactive drug

Psychedelics are a subclass of hallucinogenic drugs whose primary effect is to trigger non-ordinary mental states and an apparent expansion of consciousness. Also referred to as classic hallucinogens or serotonergic hallucinogens, the term psychedelic is sometimes used more broadly to include various types of hallucinogens, such as those which are atypical or adjacent to psychedelia like salvia and MDMA, respectively. This article makes use of the narrower classical definition of psychedelics. Classic psychedelics generally cause specific psychological, visual, and auditory changes, and oftentimes a substantially altered state of consciousness. They have had the largest influence on science and culture, and include mescaline, LSD, psilocybin, and DMT.

α-Methyltryptamine Chemical compound

α-Methyltryptamine is a psychedelic, stimulant, and entactogen drug of the tryptamine class. It was originally developed as an antidepressant by chemists at Upjohn in the 1960s, and was used briefly as an antidepressant in Russia under the trade name Indopan before being discontinued.

<span class="mw-page-title-main">2C-T-2</span> Chemical compound

2C-T-2 is a psychedelic and entactogenic phenethylamine of the 2C family. It was first synthesized in 1981 by Alexander Shulgin, and rated by him as one of the "magical half-dozen" most important psychedelic phenethylamine compounds. The drug has structural and pharmacodynamic properties similar to those of 2C-T-7.

<span class="mw-page-title-main">5-MeO-DMT</span> Chemical compound

5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine) or O-methyl-bufotenin is a psychedelic of the tryptamine class. It is found in a wide variety of plant species, and also is secreted by the glands of at least one toad species, the Colorado River toad. Like its close relatives DMT and bufotenin (5-HO-DMT), it has been used as an entheogen in South America. Slang terms include Five-methoxy, the power, bufo, and toad venom.

α-Ethyltryptamine Chemical compound

α-Ethyltryptamine, also known as etryptamine, is a psychedelic, stimulant, and entactogenic drug of the tryptamine class. It was originally developed and marketed as an antidepressant under the brand name Monase by Upjohn in the 1960s.

<span class="mw-page-title-main">5-MeO-MiPT</span> Chemical compound

5-MeO-MiPT is a psychedelic and hallucinogenic drug, used by some as an entheogen. It has structural and pharmacodynamic properties similar to the drugs 5-MeO-DiPT, DiPT, and MiPT. It is commonly used as a "substitute" for 5-MeO-DiPT because of the very similar structure and effects.

<span class="mw-page-title-main">5-MeO-DALT</span> Chemical compound

5-MeO-DALT or N,N-diallyl-5-methoxytryptamine is a psychedelic tryptamine first synthesized by Alexander Shulgin.

<span class="mw-page-title-main">Lysergamides</span> Class of chemical compounds

Amides of lysergic acid are collectively known as lysergamides, and include a number of compounds with potent agonist and/or antagonist activity at various serotonin and dopamine receptors. Lysergamides contain an embedded tryptamine structure, and as a result can produce similar, often psychedelic, effects to those of the true tryptamines.

<span class="mw-page-title-main">5-MeO-DPT</span> Chemical compound

5-MeO-DPT, is a psychedelic and entheogenic designer drug.

<span class="mw-page-title-main">Tachykinin peptides</span>

Tachykinin peptides are one of the largest families of neuropeptides, found from amphibians to mammals. They were so named due to their ability to rapidly induce contraction of gut tissue. The tachykinin family is characterized by a common C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is either an Aromatic or an Aliphatic amino acid. The genes that produce tachykinins encode precursor proteins called preprotachykinins, which are chopped apart into smaller peptides by posttranslational proteolytic processing. The genes also code for multiple splice forms that are made up of different sets of peptides.

<span class="mw-page-title-main">AL-LAD</span> Chemical compound (psychedelic drug)

AL-LAD, also known as 6-allyl-6-nor-LSD, is a psychedelic drug and an analog of lysergic acid diethylamide (LSD). It is described by Alexander Shulgin in the book TiHKAL. It is synthesized starting from nor-LSD as a precursor, using allyl bromide as a reactant.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<span class="mw-page-title-main">5,N,N-TMT</span> Chemical compound

5,N,N-trimethyltryptamine is a tryptamine derivative that is a psychedelic drug. It was first made in 1958 by Edwin H. P. Young. In animal experiments it was found to be in between DMT and 5-MeO-DMT in potency which would suggest an active dosage for humans in the 20–60 mg range. Human psychoactivity for this compound has been claimed in reports on websites such as Erowid but has not been independently confirmed.

<span class="mw-page-title-main">Benocyclidine</span> Chemical compound

Benocyclidine, also known as benzo​thiophenyl​cyclo​hexylpiperidine (BTCP), is a psychoactive recreational drug of the arylcyclohexylamine class which is related to phencyclidine (PCP). It was first described in a patent application naming Marc Caron and colleagues at Duke University in 1997.

<span class="mw-page-title-main">4-AcO-MiPT</span> Chemical compound

4-AcO-MiPT is a psychedelic tryptamine. It is closely related to O-acetylpsilocin and MiPT.

<span class="mw-page-title-main">4-AcO-DPT</span> Chemical compound

4-Acetyloxy-N,N-dipropyltryptamine is a tryptamine derivative. 4-AcO-DPT has been sold as a designer drug. It is an ester of 4-HO-DPT, a psychedelic tryptamine first synthesized by Alexander Shulgin. Anecdotal reports indicate that 4-AcO-DPT exerts psychoactive effects in humans, however, the pharmacology of 4-AcO-DPT has not been examined.

<span class="mw-page-title-main">5-MeO-MET</span> Chemical compound

5-MeO-MET (5-Methoxy-N-methyl-N-ethyltryptamine) is a relatively rare designer drug from the substituted tryptamine family, related to compounds such as N-methyl-N-ethyltryptamine and 5-MeO-DMT. It was first synthesised in the 1960s and was studied to a limited extent, but was first identified on the illicit market in June 2012 in Sweden. It was made illegal in Norway in 2013, and is controlled under analogue provisions in numerous other jurisdictions.

<span class="mw-page-title-main">6-Fluoro-DET</span> Chemical compound

6-Fluoro-DET is a substituted tryptamine derivative related to drugs such as DET and 5-fluoro-DET. It acts as a partial agonist at the 5-HT2A receptor, but while it produces similar physiological effects to psychedelic drugs, it does not appear to produce psychedelic effects itself even at high doses. For this reason it saw some use as an active placebo in early clinical trials of psychedelic drugs but was regarded as having little use otherwise, though more recent research into compounds such as AL-34662, TBG and AAZ-A-154 has shown that these kind of non-psychedelic 5-HT2A agonists can have various useful applications.

References

  1. Schifano F, Orsolini L, Papanti D, Corkery J. NPS: Medical Consequences Associated with Their Intake. Curr Top Behav Neurosci. 2017;32:351-380. doi : 10.1007/7854_2016_15 PMID   27272067
  2. Halberstadt AL, Geyer MA. Effect of Hallucinogens on Unconditioned Behavior. Curr Top Behav Neurosci. 2018;36:159-199. doi : 10.1007/7854_2016_466 PMID   28224459
  3. "That's okay, you're good" MET trip report - The Vaults of Erowid