Rezvilutamide

Last updated
Rezvilutamide
Rezvilutamide.png
Clinical data
Other namesSHR3680
Drug class Nonsteroidal antiandrogen
Identifiers
  • 4-[3-[4-[(2S)-2,3-dihydroxypropoxy]phenyl]-4,4-dimethyl-5-oxo-2-sulfanylideneimidazolidin-1-yl]-2-(trifluoromethyl)benzonitrile
CAS Number
PubChem CID
UNII
Chemical and physical data
Formula C22H20F3N3O4S
Molar mass 479.47 g·mol−1
3D model (JSmol)
  • CC1(C(=O)N(C(=S)N1C2=CC=C(C=C2)OC[C@H](CO)O)C3=CC(=C(C=C3)C#N)C(F)(F)F)C
  • InChI=1S/C22H20F3N3O4S/c1-21(2)19(31)27(15-4-3-13(10-26)18(9-15)22(23,24)25)20(33)28(21)14-5-7-17(8-6-14)32-12-16(30)11-29/h3-9,16,29-30H,11-12H2,1-2H3/t16-/m0/s1
  • Key:KRBMOYIWQCZVHA-INIZCTEOSA-N

Rezvilutamide (INN), [1] [2] sold under the brand name Ariane, is a nonsteroidal antiandrogen which is approved for the treatment of prostate cancer in China and is or was under development for the treatment of breast cancer. [3] [4] [5] It is a selective androgen receptor antagonist with reduced brain distribution compared to the structurally related nonsteroidal antiandrogen enzalutamide. [3] [5] The drug was developed by Jiangsu Hengrui Medicine. [3] Other structural analogues of rezvilutamide that are also used as antiandrogens besides enzalutamide include apalutamide and proxalutamide.

Related Research Articles

<span class="mw-page-title-main">Antiandrogen</span> Class of pharmaceutical drugs

Antiandrogens, also known as androgen antagonists or testosterone blockers, are a class of drugs that prevent androgens like testosterone and dihydrotestosterone (DHT) from mediating their biological effects in the body. They act by blocking the androgen receptor (AR) and/or inhibiting or suppressing androgen production. They can be thought of as the functional opposites of AR agonists, for instance androgens and anabolic steroids (AAS) like testosterone, DHT, and nandrolone and selective androgen receptor modulators (SARMs) like enobosarm. Antiandrogens are one of three types of sex hormone antagonists, the others being antiestrogens and antiprogestogens.

<span class="mw-page-title-main">Bicalutamide</span> Prostate cancer treatment

Bicalutamide, sold under the brand name Casodex among others, is an antiandrogen medication that is primarily used to treat prostate cancer. It is typically used together with a gonadotropin-releasing hormone (GnRH) analogue or surgical removal of the testicles to treat metastatic prostate cancer (mPC). To a lesser extent, it is used at high doses for locally advanced prostate cancer (LAPC) as a monotherapy without castration. Bicalutamide was also previously used as monotherapy to treat localized prostate cancer (LPC), but authorization for this use was withdrawn following unfavorable trial findings. Besides prostate cancer, bicalutamide is limitedly used in the treatment of excessive hair growth and scalp hair loss in women, as a puberty blocker and component of feminizing hormone therapy for transgender girls and women, to treat gonadotropin-independent early puberty in boys, and to prevent overly long-lasting erections in men. It is taken by mouth.

<span class="mw-page-title-main">Flutamide</span> Chemical compound

Flutamide, sold under the brand name Eulexin among others, is a nonsteroidal antiandrogen (NSAA) which is used primarily to treat prostate cancer. It is also used in the treatment of androgen-dependent conditions like acne, excessive hair growth, and high androgen levels in women. It is taken by mouth, usually three times per day.

<span class="mw-page-title-main">Nilutamide</span> Chemical compound

Nilutamide, sold under the brand names Nilandron and Anandron, is a nonsteroidal antiandrogen (NSAA) which is used in the treatment of prostate cancer. It has also been studied as a component of feminizing hormone therapy for transgender women and to treat acne and seborrhea in women. It is taken by mouth.

<span class="mw-page-title-main">Enzalutamide</span> Antiandrogen medication used in treatment of prostate cancer

Enzalutamide, sold under the brand name Xtandi, is a nonsteroidal antiandrogen (NSAA) medication which is used in the treatment of prostate cancer. It is indicated for use in conjunction with castration in the treatment of metastatic castration-resistant prostate cancer (mCRPC), nonmetastatic castration-resistant prostate cancer, and metastatic castration-sensitive prostate cancer (mCSPC). It is taken by mouth.

<span class="mw-page-title-main">Cyproterone acetate</span> Chemical compound

Cyproterone acetate (CPA), sold alone under the brand name Androcur or with ethinylestradiol under the brand names Diane or Diane-35 among others, is an antiandrogen and progestin medication used in the treatment of androgen-dependent conditions such as acne, excessive body hair growth, early puberty, and prostate cancer, as a component of feminizing hormone therapy for transgender women, and in birth control pills. It is formulated and used both alone and in combination with an estrogen. CPA is taken by mouth one to three times per day.

<span class="mw-page-title-main">Nonsteroidal antiandrogen</span>

A nonsteroidal antiandrogen (NSAA) is an antiandrogen with a nonsteroidal chemical structure. They are typically selective and full or silent antagonists of the androgen receptor (AR) and act by directly blocking the effects of androgens like testosterone and dihydrotestosterone (DHT). NSAAs are used in the treatment of androgen-dependent conditions in men and women. They are the converse of steroidal antiandrogens (SAAs), which are antiandrogens that are steroids and are structurally related to testosterone.

<span class="mw-page-title-main">Seviteronel</span> Chemical compound

Seviteronel is an experimental cancer medication which is under development by Viamet Pharmaceuticals and Innocrin Pharmaceuticals for the treatment of prostate cancer and breast cancer. It is a nonsteroidal CYP17A1 inhibitor and works by inhibiting the production of androgens and estrogens in the body. As of July 2017, seviteronel is in phase II clinical trials for both prostate cancer and breast cancer. In January 2016, it was designated fast-track status by the United States Food and Drug Administration for prostate cancer. In April 2017, seviteronel received fast-track designation for breast cancer as well.

Darolutamide, sold under the brand name Nubeqa, is an antiandrogen medication which is used in the treatment of non-metastatic castration-resistant prostate cancer in men. It is specifically approved to treat non-metastatic castration-resistant prostate cancer (nmCRPC) in conjunction with surgical or medical castration. The medication is taken by mouth twice per day with food.

<span class="mw-page-title-main">Apalutamide</span> Chemical compound

Apalutamide, sold under the brand name Erleada among others, is a nonsteroidal antiandrogen (NSAA) medication which is used in the treatment of prostate cancer. It is specifically indicated for use in conjunction with castration in the treatment of non-metastatic castration-resistant prostate cancer (NM-CRPC). It is taken by mouth.

<span class="mw-page-title-main">DIMP (antiandrogen)</span> Chemical compound

DIMP, or N-(3,5-dimethyl-4-isoxazolylmethyl)phthalimide, is a nonsteroidal antiandrogen (NSAA) structurally related to thalidomide that was first described in 1973 and was never marketed. Along with flutamide, it was one of the earliest NSAAs to be discovered, and for this reason, has been described as a "classical" NSAA. The drug is a selective, competitive, silent antagonist of the AR, although it is described as an "only relatively weak competitor". Its relative binding affinity for the androgen receptor is about 2.6% of that of metribolone. DIMP possesses no androgenic, estrogenic, progestogenic, or antigonadotropic activity, but it does reverse the antigonadotropic effects of testosterone, indicating that, like other pure AR antagonists, it is progonadotropic.

<i>N</i>-Desmethylenzalutamide Chemical compound

N-Desmethylenzalutamide is a nonsteroidal antiandrogen (NSAA) and the major metabolite of enzalutamide, an NSAA which is used as a hormonal antineoplastic agent in the treatment of metastatic prostate cancer. It has similar activity to that of enzalutamide and, with enzalutamide therapy, circulates at similar concentrations to those of enzalutamide at steady state. N-Desmethylenzalutamide is formed from enzalutamide in the liver by the cytochrome P450 enzymes CYP2C8 and CYP3A4. It has a longer terminal half-life than enzalutamide.

5<i>N</i>-Bicalutamide Chemical compound

5N-Bicalutamide, or 5-azabicalutamide, is a highly potent nonsteroidal antiandrogen (NSAA) which was discovered in 2016. It is a structural modification of bicalutamide differing it from it only by the replacement of a carbon atom with a nitrogen atom in one of its phenyl rings. Similarly to bicalutamide, the drug acts as a selective antagonist of the androgen receptor (AR). However, unlike bicalutamide, it is a reversible covalent antagonist and stays bound to the receptor for a far longer amount of time. As a result of this difference, 5N-bicalutamide has markedly improved potency relative to bicalutamide, with approximately 150-fold higher affinity for the AR (Ki = 0.15 nM versus 22.3 nM) and about 20-fold greater functional inhibition (IC50 = 15 nM versus 310 nM) of the AR. Future studies of 5N-bicalutamide in normal and mutated prostate cancer cells are planned or underway and it is anticipated that N-bicalutamide may be able to overcome resistance to current antiandrogens that are used in the treatment of prostate cancer.

Comparison of the nonsteroidal antiandrogen (NSAA) bicalutamide with other antiandrogens reveals differences between the medications in terms of efficacy, tolerability, safety, and other parameters. Relative to the other first-generation NSAAs, flutamide and nilutamide, bicalutamide shows improved potency, efficacy, tolerability, and safety, and has largely replaced these medications in clinical practice. Compared to the second-generation NSAAs, enzalutamide and apalutamide, bicalutamide has inferior potency and efficacy but similar tolerability and safety and a lower propensity for drug interactions.

<span class="mw-page-title-main">Pharmacology of bicalutamide</span>

The pharmacology of bicalutamide, a nonsteroidal antiandrogen (NSAA), has been well-characterized. In terms of pharmacodynamics, bicalutamide acts as a selective antagonist of the androgen receptor (AR), the biological target of androgens like testosterone and dihydrotestosterone (DHT). It has no capacity to activate the AR. It does not decrease androgen levels and has no other important hormonal activity. The medication has progonadotropic effects due to its AR antagonist activity and can increase androgen, estrogen, and neurosteroid production and levels. This results in a variety of differences of bicalutamide monotherapy compared to surgical and medical castration, such as indirect estrogenic effects and associated benefits like preservation of sexual function and drawbacks like gynecomastia. Bicalutamide can paradoxically stimulate late-stage prostate cancer due to accumulated mutations in the cancer. When used as a monotherapy, bicalutamide can induce breast development in males due to its estrogenic effects. Unlike other kinds of antiandrogens, it may have less adverse effect on the testes and fertility.

<span class="mw-page-title-main">RD-162</span> Chemical compound

RD-162 is a second-generation nonsteroidal antiandrogen (NSAA) which was developed for the treatment of prostate cancer but was never marketed. It acts as a potent and selective silent antagonist of the androgen receptor (AR). The drug is a diarylthiohydantoin derivative. It is closely related to enzalutamide and apalutamide. Both RD-162 and enzalutamide show 5- to 8-fold higher affinity for the AR than the first-generation NSAA bicalutamide, and only 2- to 3-fold lower affinity than dihydrotestosterone (DHT), the major endogenous ligand of the receptor in the prostate gland.

<span class="mw-page-title-main">RU-59063</span> Chemical compound

RU-59063 is a nonsteroidal androgen or selective androgen receptor modulator (SARM) which was first described in 1994 and was never marketed. It was originally thought to be a potent antiandrogen, but subsequent research found that it actually possesses dose-dependent androgenic activity, albeit with lower efficacy than dihydrotestosterone (DHT). The drug is an N-substituted arylthiohydantoin and was derived from the first-generation nonsteroidal antiandrogen (NSAA) nilutamide. The second-generation NSAAs enzalutamide, RD-162, and apalutamide were derived from RU-59063.

<span class="mw-page-title-main">EM-5854</span> Chemical compound

EM-5854 is a steroidal antiandrogen which was under development by Endoceutics, Inc. for the treatment of prostate cancer. It was first described in a patent in 2008, and was further characterized in 2012. EM-5854 reached phase I/II clinical trials for the treatment of prostate cancer but development was discontinued in March 2019.

Jiangsu Hengrui Pharmaceuticals Company Ltd., also known as Jiangsu Hengrui, is a Chinese pharmaceutical company that manufactures and distributes various types of drug packaging materials, cancer-treating antineoplastics, cardiovascular medication, painkillers, antibiotics, and related products. It is the largest listed pharmaceutical company in China.

EPI-7386 is an N-terminal domain antiandrogen, or antagonist of the N-terminal domain (NTD) of the androgen receptor (AR), which is under development for the treatment of prostate cancer. The compound was developed as a successor of previous drugs in the EPI series such as EPI-001, ralaniten (EPI-002), and ralaniten acetate (EPI-506). EPI-7386 shows 20-fold higher antiandrogenic potency than ralaniten in vitro (IC50 = 535 nM vs. 9,580 nM, respectively), as well as greater stability in human hepatocytes. It is planned to enter phase I clinical trials in 2020.

References

  1. "Rezvilutamide". chemidplus. U.S. National Library of Medicine.
  2. "International Nonproprietary Names for Pharmaceutical Substances (INN)" (PDF). WHO.
  3. 1 2 3 "SHR 3680". AdisInsight.
  4. Keam SJ (January 2023). "Rezvilutamide: First Approval". Drugs. 83 (2): 189–193. doi:10.1007/s40265-022-01831-y. PMID   36630077. S2CID   255593586.
  5. 1 2 Qin X, Han W, Luo H, Du C, Zou Q, Sun Z, et al. (2020). "SHR3680, a novel antiandrogen, for the treatment of metastatic castration-resistant prostate cancer (mCRPC): A phase I/II study". Journal of Clinical Oncology. 38 (6_suppl): 90. doi:10.1200/JCO.2020.38.6_suppl.90. S2CID   214027454.