Soybean rust

Last updated
Soybean rust
Soybean rust.jpg
Soybean leaves infected with soybean rust, uredinia are visible
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales
Family: Phakopsoraceae
Genus: Phakopsora
Groups included
Cladistically included but traditionally excluded taxa

All other Phakopsora species

Soybean rust is a disease that affects soybeans and other legumes. It is caused by two types of fungi, Phakopsora pachyrhizi , commonly known as Asian soybean rust, and Phakopsora meibomiae , commonly known as New World soybean rust. P. meibomiae is the weaker pathogen of the two and generally does not cause widespread problems. The disease has been reported across Asia, Australia, Africa, South America and the United States.

Contents

Importance

Soybean is one of the most important commercial crops around the world. Asian soybean rust is the major disease that affects soybeans. It causes lesions on the leaves of soybean plants and eventually kills the plants. The disease has caused serious yield loss of soybeans. [1] In the areas where this disease is common, the yield losses can be up to 80%. [2] The first reported cases in the United States occurred in 2004. [3] This population originated in northern South America or the Caribbean. [3] The spores were most likely spread by Hurricane Ivan. [3] [2] In 2002, USDA reported 10-60% yield losses in South America and Africa. [4] in countries were this pathogen is established, estimated losses are between 10 and 80% depending on the inoculation and environmental conditions. [5]

Host and symptoms

Soybean rust is caused by two types of fungi, Phakopsora pachyrhizi and Phakopsora meibomiae . [6] It affects several important commercial plants, however, most notable for soybeans. Asian Soybean Rust can infect and reproduce on 90 known plant species, 20 of which are found in the United States, such as, soybeans, dry beans, kidney beans, peas. Asian soybean rust also infects yellow sweet lover, vetch, medic, lupine, green and kidney bean, and lima and butter bean. [7] leguminous forage crops such as trefoil and sweet clover and weeds such as kudzu. [1]

Soybean leaves infected with ASR (photo from USDA) Phakopsora pachyrhizi 1.jpg
Soybean leaves infected with ASR (photo from USDA)

At the early stage of Asian Soybean Rust, it causes yellow mosaic discoloration on the upper surfaces of older foliage. At this stage, it is usually hard to identify since the symptoms are relatively small and poorly defined. [9]

Later as the disease continues to progress, the leaves will turn yellow and there will be lesions mostly on the undersides of the leaves and sometimes on petioles, stems or pods and premature defoliation can also be observed. [10] In Phakopsora pachyrhizi will begin to form small brown and brick red sports on the lower canopy of the leaves that will begin to turn into lesions.

Asian Soybean Rust produces two types of lesions. Lesions at the later stage will turn from gray to tan or reddish brown. Mature tan lesions consist of small pustules surrounded by discolored necrotic areas. Tan spores can be found at the necrotic areas on the underside of the leaf. In the case of reddish brown lesions, there are larger reddish brown necrotic areas with few pustules and visible spores on the underside of the leaf. A good way to distinguish Asian Soybean Rust from other diseases is to look at the pustules it produces. ASR pustules usually do not have the yellow halo which is typical of bacterial pustules. Besides, ASR pustules are raised and can be commonly found on the underside of the leaf which makes it different from the lesions caused by spot diseases. [9] [11]

Soybean plants are one of ASR's most known hosts and are susceptible at any stage in the life cycle. However, symptoms are most commonly found during or after flowering. [12] ASR infection will reduce pod production and fill. [10]

Environment

Asian Soybean Rust (ASR) was first detected in Asia. [1] It has been found in many countries around the world since then. For example, Australia, China, Korea, India, Japan, Nepal, Taiwan, Thailand, the Philippines, Mozambique, Nigeria, Rwanda, Uganda, Zimbabwe, South Africa, Brazil, Argentina, and Paraguay. This disease was first detected in the Caribbean in Puerto Rico in 1976 [6] and first reported in the continental United States in 2004. [1]

Asian Soybean Rust favors environments that are humid and warm. A continuous period of wetness on leaves will aid the growth of this disease since this situation is required for spores to germinate. Therefore, is most likely to appear under conditions of 60 to 85 °F (16 to 29 °C) and a relative humidity of 75% to 80%. Therefore, ASR is a more serious problem in tropical and subtropical areas in Asia, Africa, Australia and South America. [1] It is unable to survive the cold winters of northern habitats. However, this pathogen can be spread easily from wind and storm fronts and can inoculate quickly within a soybean field under favorable environmental conditions. [2] And the Asian Soybean Rust may be favored by the climatic anomalies phenomena that cause extreme rainfall natural disasters that is called El Niño. [13]

Disease cycle

Soybean rust is spread by windblown spores and has caused significant crop losses in many soybean-growing regions of the world. [14] Windblown spores can travel for great distances and are released in cycles of seven days to two weeks. It is likely that ASR will survive on vast acreages of naturalized kudzu in the southern U.S. and thereby establish a permanent presence in the continental U.S. It is commonly believed that the disease was carried from Venezuela to the United States by Hurricane Ivan.[ citation needed ]

P. pachyrhizi is an obligate parasite, meaning that it must have live, green tissue to survive. For this reason ASR is something that will blow in every year, as cold winters will push it back. It can overwinter in southern states, so long as it has a living host.

ASR overwinters on live host legumes and sporulates the following spring. It cannot survive on dead tissue or crop residues. [15]

Additional hosts can serve as overwintering reservoirs for the pathogen and allow for build-up of inoculum, in those environs free from freezing temperatures. The pathogen is well adapted for long-distance dispersal, because spores can be readily carried long distances by the wind to new, rust-free regions. [14]

Overwintering sites of soybean rust are restricted to areas with very mild winters, such as the gulf coasts of Florida, the very southernmost areas of Texas, or in Mexico. Soybean rust will not survive over the winter in the North Central region because it can't live and reproduce without green living tissue. [16]

Spores of the soybean rust pathogen are transported readily by air currents and can be carried hundreds of miles in a few days. Weather conditions will determine when and where the spores travel from south to north.

Rust spores, called urediniospores, are able to penetrate the plant cells directly, rather than through natural openings or through wounds in the leaf tissue. Thus infection is relatively quick: about 9 to 10 days from initial infection to the next cycle of spore production.

Rust is a multi-cyclic disease. After the initial infection is established, the infection site can produce spores for 10 to 14 days. Abundant spore production occurs during wet leaf periods (in the form of rain or dew) of at least 8 hours and moderate temperatures of 60 to 80 °F (16 to 27 °C). [16]

The process

The infection process starts when urediniospores germinate to produce a single germ tube that grows across the leaf surface, until an appressorium forms. Appressoria form over anticlinal walls or over the center of epidermal cells, but rarely over stomata. Penetration of epidermal cells is by direct penetration through the cuticle by an appressorial peg. When appressoria form over stomata, the hyphae penetrate one of the guard cells rather than entering the leaf through the stomatal opening. This rust and related species are unique in their ability to directly penetrate the epidermis; most rust pathogens enter the leaf through stomatal openings and penetrate cells once inside the leaf. The direct penetration of the epidermal cells and the non-specific induction of appressoria in the infection process of P. pachyrhizi may aid in understanding the broad host range of the pathogen and may have consequences in the development of resistant cultivars. [17]

Uredinia can develop 5 to 8 days after infection by urediniospores. The first urediniospores can be produced as early as 9 days after infection, and spore production can continue for up to 3 weeks. Uredinia may develop for up to 4 weeks after a single inoculation, and secondary uredinia will arise on the margins of the initial infections for an additional 8 weeks. Thus, from an initial infection, there could be first generation pustules that maintain sporulation for up to 15 weeks. Even under dry conditions this extended sporulation capacity allows the pathogen to persist and remain a threat. If conditions for re-infection are sporadic throughout the season, significant inoculum potential still remains from the initial infection to reestablish an epidemic. Successful infection is dependent on the availability of moisture on plant surfaces. At least 6 hours of free moisture is needed for infection with maximum infections occurring with 10 to 12 hours of free moisture. Temperatures between 15 and 28 °C (59 and 82 °F) are ideal for infection. [17]

Management and control

Disease control options for ASR are limited. Rust descends in clouds of spores across the countryside. Cultural practices such as row spacing and crop rotations have little effect. Resistant cultivars do exist, [18] [19] carrying what are called Rpp genes. [18] [19] When weather and disease infection conditions are favorable, the occurrence of ASR can be widespread. Thus, remedial control measures—using fungicides as protective sprays—are the main effective disease control method. [15] [18] [19] Soybean rust must be managed as early in the growing season as possible to be managed successfully. [20]

Synthetic fungicides are the primary disease control option for protection against Asian soybean rust. The cost of spraying is estimated to be about $15 to $20 per acre; however, two or three sprays may be needed over the course of the growing season. These are significant additional production costs for soybean growers. [15]

Fungicide screening trials to determine disease control efficacy have been field conducted in South America and South Africa. These reports are available on the Web through USDA's Integrated Pest Management Information Centers. [21] These research trials form the basis for fungicidal recommendations in the U.S.

Recent research from Washington State University indicates that the herbicide Glyphosate may be effective in dealing with the fungus.[ citation needed ]

Rust-resistant varieties of soybeans are currently in development by both public universities and private industry. [18] [19]

In some regions, the selection of winter cover crops and forage legumes may be effected, since they can serve as host plants. [15] Resistance genes (Rpps) have been identified [18] [19] and host resistance is expected to be an effective, long-term solution for soybean rust in the future. [18] [19] Until resistant commercial varieties are in place, the management of rust depends on judicious use of fungicides. [16] [18] [19]

When untreated, soybean rust causes yield losses due to premature defoliation, fewer seeds per pod and decreased number of filled pods per plant. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<i>Hemileia vastatrix</i> Species of fungus that infects coffee plants

Hemileia vastatrix is a multicellular basidiomycete fungus of the order Pucciniales that causes coffee leaf rust (CLR), a disease affecting the coffee plant. Coffee serves as the obligate host of coffee rust, that is, the rust must have access to and come into physical contact with coffee in order to survive.

<span class="mw-page-title-main">Wheat leaf rust</span> Fungal disease of wheat, most prevalent

Wheat leaf rust is a fungal disease that affects wheat, barley, rye stems, leaves and grains. In temperate zones it is destructive on winter wheat because the pathogen overwinters. Infections can lead up to 20% yield loss. The pathogen is a Puccinia rust fungus. It is the most prevalent of all the wheat rust diseases, occurring in most wheat-growing regions. It causes serious epidemics in North America, Mexico and South America and is a devastating seasonal disease in India. P. triticina is heteroecious, requiring two distinct hosts.

<i>Phragmidium violaceum</i> Species of fungus

Phragmidium violaceum is a plant pathogen native to Europe, Africa, and the Middle East. It primarily infects Rubus species.

Puccinia cacabata is a fungal species and plant pathogen that causes rust on cotton. It was originally found on the leaves of Chloris ciliata in Bolivia.

Puccinia schedonnardii is a basidiomycete fungus that affects cotton. More commonly known as a “rust,” this pathogen typically affects cotton leaves, which can decrease the quality of the boll at time of harvest. As large percentages of cotton in the United States are resistant to various rust varieties, there is little economic importance to this disease. In places where rust is prevalent, however, growers could see up to a 50% reduction in yield due to rust infection.

<i>Albugo</i> Genus of plant-parasitic oomycetes

Albugo is a genus of plant-parasitic oomycetes. Those are not true fungi (Eumycota), although many discussions of this organism still treat it as a fungus. The taxonomy of this genus is incomplete, but several species are plant pathogens. Albugo is one of three genera currently described in the family Albuginaceae, the taxonomy of many species is still in flux.

<i>Puccinia asparagi</i> Species of fungus

Puccinia asparagi is the causative agent of asparagus rust. It is an autoecious fungus, meaning that all stages of its life cycle – pycniospores, aeciospores, and teliospores – all develop upon the same host plant . Rust diseases are among the most destructive plant diseases, known to cause famine following destruction of grains, vegetables, and legumes. Asparagus rust occurs wherever the plant is grown and attacks asparagus plants during and after the cutting season. Asparagus spears are usually harvested before extensive rust symptoms appear. Symptoms are first noticeable on the growing shoots in early summer as light green, oval lesions, followed by tan blister spots and black, protruding blisters later in the season. The lesions are symptoms of Puccinia asparagi during early spring, mid-summer and later summer to fall, respectively. Severe rust infections stunt or kill young asparagus shoots, causing foliage to fall prematurely, and reduce the ability of the plant to store food reserves. The Puccinia asparagi fungus accomplishes this by rust lowering the amounts of root storage metabolites. The infected plant has reduced plant vigor and yield, often leading to death in severe cases. Most rust diseases have several stages, some of which may occur on different hosts; however, in asparagus rust all the life stages occur on asparagus. Because of this, many observers mistake the different stages of the Puccinia asparagi life cycle as the presence of different diseases. The effects of Puccinia asparagi are present worldwide wherever asparagus is being grown. Asparagus rust is a serious threat to the asparagus industry.

<i>Puccinia helianthi</i> Species of fungus

Puccinia helianthi is a macrocyclic and autoecious fungal plant pathogen that causes rust on sunflower. It is also known as "common rust" and "red rust" of sunflower.

<i>Uromyces viciae-fabae <span style="font-style:normal;">var.</span> viciae-fabae</i> Species of fungus

Uromyces viciae-fabae var. viciae-fabae is a plant pathogen commonly known as faba-bean rust. The rust is distinguished by the typical rust-like marks on the stem and leaves, causing defoliation and loss of photosynthetic surface along with reduction in yield. The disease is fungal and is autoecious meaning it has one plant host. The rust of faba beans is macrocyclic, or contains 5 spores during its life cycle.

<i>Exobasidium vexans</i> Species of fungus

Exobasidium vexans is a plant pathogen affecting tea.

Microdochium panattonianum is a fungal plant pathogen. This pathogen causes anthracnose of lettuce, a disease which produces necrotic lesions in cultivated lettuce. In extended periods of wet weather, M. panattonianum can cause significant crop-losses. The impact of this pathogen is exacerbated by farming lettuce without crop rotation, and by planting of susceptible lettuce varieties, such as Romaine lettuce.

<i>Cercospora sojina</i> Species of fungus

Cercospora sojina is a fungal plant pathogen which causes frogeye leaf spot of soybeans. Frog eye leaf spot is a major disease on soybeans in the southern U.S. and has recently started to expand into the northern U.S. where soybeans are grown. The disease is also found in other soybean production areas of the world.

<i>Phakopsora pachyrhizi</i> Species of fungus

Phakopsora pachyrhizi is a plant pathogen. It causes Asian soybean rust.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

<i>Phragmidium</i> Genus of fungi

Phragmidium is a genus of rust fungus that typically infects plant species in the family Rosaceae. It is characterised by having stalked teliospores borne on telia each having a row of four or more cells. All species have a caeoma which is a diffuse aecidium lacking a peridium.

<span class="mw-page-title-main">Corn grey leaf spot</span> Fungal disease of maize

Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.

Alternaria black spot of canola or grey leaf spot is an ascomycete fungal disease caused by a group of pathogens including: Alternaria brassicae, A. alternata and A. raphani. This pathogen is characterized by dark, sunken lesions of various size on all parts of the plant, including the leaves, stem, and pods. Its primary economic host is canola. In its early stages it only affects the plants slightly by reducing photosynthesis, however as the plant matures it can cause damage to the seeds and more, reducing oil yield as well.

Phakopsora euvitis is a rust fungus that causes disease of grape leaves. This rust fungus has been seen in regions including: Eastern Asia, Southern Asia, Southwestern Brazil, the Americas, and northern Australia. It is widely distributed in eastern and southern Asia but was first discovered on grapevines in Darwin, Australia in 2001 and was identified as Asian grapevine leaf rust by July 2007.

<i>Puccinia sorghi</i> Common rust of maize/corn fungal disease

Puccinia sorghi, or common rust of maize, is a species of rust fungus that infects corn and species from the plant genus Oxalis.

References

  1. 1 2 3 4 5 "Soybean Rust". National Invasive Species Information Center . 2012-02-24. Retrieved 2020-12-06.
  2. 1 2 3 "Soybean Rust". ohioline.osu.edu. Retrieved 2022-05-07.
  3. 1 2 3 Singh, R. P.; Hodson, D. P.; Jin, Yue; Huerta-Espino, J.; Kinyua, M. G.; Wanyera, R.; Njau, P.; Ward, R. W. (2006). "Current status, likely migration and strategies to mitigate the threat to wheat production from rzace Ug99 (TTKS) of stem rust pathogen". CABI Reviews. CABI Publishing. 2006. doi: 10.1079/pavsnnr20061054 . ISSN   1749-8848.
  4. "Institute for Technology Development". iftd.org. 2007-07-26. Archived from the original on 2007-07-26. Retrieved 2020-12-06.{{cite web}}: CS1 maint: unfit URL (link)
  5. "Soybean Rust". extension.missouri.edu. Retrieved 2022-05-07.
  6. 1 2 "Plant Pests and Diseases". United States Department of Agriculture Animal and Plant Health Inspection Service . Retrieved 2020-12-06.
  7. "Asian Soybean Rust | Integrated Crop Management". crops.extension.iastate.edu. Retrieved 2022-05-07.
  8. "Científicos identifican los genes de soya que proveen resistencia contra la roya / 26 de marzo 2009 / Noticias del Servicio de Investigación Agrícola, USDA". Agricultural Research Service United States Department of Agriculture (in Spanish). 2009-05-12. Archived from the original on 2009-05-12. Retrieved 2020-12-06.
  9. 1 2 "Factsheet - Plant Protection and Quarantine - May 2004 - Soybean Rust" (PDF). Archived from the original (PDF) on 2006-09-27.
  10. 1 2 "Virginia Asian Soybean Rust". ppwsipm.contentsrvr.net. 2008-07-06. Archived from the original on 2008-07-06. Retrieved 2020-12-06.
  11. "USDA Confirms Soybean Rust in United States - Invasive and Exotic Species of North America". Invasive.org. 2006-02-12. Archived from the original on 2006-02-12. Retrieved 2020-12-06.
  12. "Plant Health Initiative". planthealth.info. 2005-03-15. Archived from the original on 2005-03-15. Retrieved 2020-12-06.{{cite web}}: CS1 maint: unfit URL (link)
  13. "ALERTA: El Niño pode favorecer ferrugem asiática no Brasil" (in Portuguese). Agrolink. 31 March 2023. Retrieved 31 March 2023.
  14. 1 2 3 "Soybean Rust - Plant and Pest Diagnostic Laboratory, Purdue University". ppdl.purdue.edu. 2004-10-16. Archived from the original on 2004-10-16. Retrieved 2020-12-06.
  15. 1 2 3 4 Born, Holly; Diver, Steve (2005-11-28). "Asian Soybean Rust: Notes and Organic Control Options for Farmers". attra.ncat.org. Archived from the original on 2005-11-28. Retrieved 2020-12-06.
  16. 1 2 3 "Plant Health Initiative". planthealth.info. 2005-03-09. Archived from the original on 2005-03-09. Retrieved 2020-12-06.
  17. 1 2 "Illinois Soybean Rust Information Center". soybeanrust.org. 2006-08-19. Archived from the original on 2006-08-19. Retrieved 2020-12-06.
  18. 1 2 3 4 5 6 7 Kashiwa, T.; Muraki, Y.; Yamanaka, N. (2020-08-06). "Near-isogenic soybean lines carrying Asian soybean rust resistance genes for practical pathogenicity validation". Scientific Reports. 10 (1): 13270. Bibcode:2020NatSR..1013270K. doi:10.1038/s41598-020-70188-7. PMC   7411041 . PMID   32764613.
  19. 1 2 3 4 5 6 7 Langenbach, Caspar; Campe, Ruth; Beyer, Sebastian F.; Mueller, André N.; Conrath, Uwe (2016-06-07). "Fighting Asian Soybean Rust". Frontiers in Plant Science . Frontiers Media SA. 7: 797. doi: 10.3389/fpls.2016.00797 . ISSN   1664-462X. PMC   4894884 . PMID   27375652.
  20. "Soybean rust". extension.umn.edu. Retrieved 2022-05-04.
  21. "National Site for the Regional IPM Centers". Archived from the original on 2015-09-24. Retrieved 2015-10-16.

Further reading