Tetrachloroethylene

Last updated

Contents

Tetrachloroethylene
Tetrachloroethylene Tetrachloroethylene.svg
Tetrachloroethylene
Tetrachloroethylene Tetrachloroethylene-3D-vdW.png
Tetrachloroethylene
   Carbon, C
   Chlorine, Cl
Tetrakloroetilen2.jpg
Names
Preferred IUPAC name
Tetrachloroethene
Other names
Carbon bichloride; Carbon dichloride (Carboneum Dichloratum); Dicarbon tetrachloride; [1] Ethylene tetrachloride; Perchlor; Perchloroethene; Perchloroethylene; Chlorethose [2]
Identifiers
3D model (JSmol)
AbbreviationsPCE; Perc; Per
1304635
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.388 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-825-9
101142
KEGG
PubChem CID
RTECS number
  • KX3850000
UNII
UN number 1897
  • InChI=1S/C2Cl4/c3-1(4)2(5)6 Yes check.svgY
    Key: CYTYCFOTNPOANT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2Cl4/c3-1(4)2(5)6
    Key: CYTYCFOTNPOANT-UHFFFAOYAO
  • ClC(Cl)=C(Cl)Cl
Properties
C2Cl4
Molar mass 165.82 g/mol
AppearanceClear, very refractive, colorless liquid
Odor Mild, sharp and sweetish [3]
Density 1.622 g/cm3
Melting point −22.0 to −22.7 °C (−7.6 to −8.9 °F; 251.2 to 250.5 K)
Boiling point 121.1 °C (250.0 °F; 394.2 K)
0.15 g/L (25 °C)
Vapor pressure 14 mmHg (20 °C) [3]
−81.6·10−6 cm3/mol
1.505
Viscosity 0.89  cP at 25 °C
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Mild skin and respiratory irritant
GHS labelling:
GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Warning
H351, H411
P201, P202, P273, P281, P308+P313, P391, P405, P501
NFPA 704 (fire diamond)
[4]
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point Not flammable
Lethal dose or concentration (LD, LC):
3420 mg/kg (oral, rat) [5]
2629 mg/kg (oral, rat), >10000 mg/kg (dermal, rat) [6]
4000 ppm (rat, 4 hr)
5200 ppm (mouse, 4 hr)
4964 ppm (rat, 8 hr) [7]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 100 ppm
C 200 ppm (for 5 minutes in any 3-hour period), with a maximum peak of 300 ppm [3]
REL (Recommended)
Ca Minimize workplace exposure concentrations. [3]
IDLH (Immediate danger)
Ca [150 ppm] [3]
Safety data sheet (SDS) External MSDS
Related compounds
Related analogous organohalides
Tetrafluoroethylene
Tetrabromoethylene
Tetraiodoethylene
Related compounds
Trichloroethylene
Dichloroethylene
1,1,2,2-Tetrachloroethane
Carbon tetrachloride
Supplementary data page
Tetrachloroethylene (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene, [lower-alpha 1] and abbreviations such as "perc" (or "PERC"), and "PCE", is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called "dry-cleaning fluid". It also has its uses as an effective automotive brake cleaner. It has a mild sweet, sharp odor, detectable by most people at a concentration of 50 ppm. [8]

History and production

French chemist Henri Victor Regnault first synthesized tetrachloroethylene in 1839 by thermal decomposition of hexachloroethane following Michael Faraday's 1820 synthesis of protochloride of carbon (carbon tetrachloride).

C2Cl6 → C2Cl4 + Cl2

Faraday was previously falsely credited for the synthesis of tetrachloroethylene, which in reality, was carbon tetrachloride. While trying to make Faraday's "protochloride of carbon", Regnault found that his compound was different from Faraday's. Victor Regnault stated "According to Faraday, the chloride of carbon boiled around 70 °C (158 °F) to 77 °C (171 °F) degrees Celsius but mine did not begin to boil until 120 °C (248 °F) ". [9]

A few years after its discovery, in the 1840s, Tetrachloroethylene was named Chlorethose by Auguste Laurent. The -ose ending was explained as the fourfold replacement of the hydrogens in ethylene. If only one atom of hydrogen was replaced, the word would end with -ase. By Laurent's logic, vinyl chloride would be named Chlorethase. [10]

Tetrachloroethylene can be made by passing chloroform vapour through a red-hot tube, the side products include hexachlorobenzene and hexachloroethane, as reported in 1886. [11]

Most tetrachloroethylene is produced by high-temperature chlorinolysis of light hydrocarbons. The method is related to Faraday's method since hexachloroethane is generated and thermally decomposes. [12] Side products include carbon tetrachloride, hydrogen chloride, and hexachlorobutadiene.

Several other methods have been developed. When 1,2-dichloroethane is heated to 400 °C with chlorine, tetrachloroethylene is produced by the chemical reaction:

ClCH2CH2Cl + 3 Cl2 → Cl2C=CCl2 + 4 HCl

This reaction can be catalyzed by a mixture of potassium chloride and aluminium chloride or by activated carbon. Trichloroethylene is a major byproduct, which is separated by distillation.

Worldwide production was about 1 million metric tons (980,000 long tons; 1,100,000 short tons) in 1985. [12]

Although in very small amounts, tetrachloroethylene occurs naturally in volcanoes along with trichloroethylene. [13]

Uses

Advertisement for Dow Chemical's Tetrachloroethylene, 1952 You Can Cut Operating Costs with Dow-PER - DPLA - ee749e230034a7ce59dde05b9dfc5fcc.jpg
Advertisement for Dow Chemical's Tetrachloroethylene, 1952

Tetrachloroethylene is an excellent nonpolar solvent for organic materials. Additionally, it is volatile, highly stable (easily recycled) and nonflammable, and has low toxicity. For these reasons, it has been widely used in dry cleaning worldwide since the 1930s. The chemist Sylvia Stoesser (1901–1991) suggested tetrachloroethylene to be used in dry cleaning as an alternative to highly flammable dry cleaning solvents such as naphtha. [14]

It is also used to degrease metal parts in the automotive and other metalworking industries, usually as a mixture with other chlorocarbons. It appears in a few consumer products including paint strippers, aerosol preparations and spot removers.

Historical applications

Tetrachloroethylene was once extensively used as an intermediate in the manufacture of HFC-134a and related refrigerants.

In the early 20th century, tetrachloroethene was used for the treatment of hookworm infestation. [15] [16] In 1925, American veterinarian Maurice Crowther Hall (1881-1938), working on anthelmintics, demonstrated the effectiveness of tetrachloroethylene in the treatment of ancylostomiasis caused by hookworm infestation in humans and animals. Before Hall tested tetrachloroethylene on himself, in 1921 he discovered the powerful effect of carbon tetrachloride on intestinal parasites and was nominated for the Nobel Prize in Physiology or Medicine, but a few years later he found tetrachloroethylene to be more effective and safer. [17] Tetrachloroethylene treatment has played a vital role in eradicating hookworms in the United States and abroad. Hall's innovation was considered a breakthrough in medicine. It was given orally as a liquid or in capsules along with magnesium sulfate to get rid of the Necator americanus parasite in humans. The recommended dose of Tetrachloroethylene for adults was about 3 mL. [18]

Chemical properties and reactions

Tetrachloroethylene is a derivative of ethylene with all hydrogens replaced by chlorine. 14.49% of the molecular weight of tetrachloroethylene consists of carbon and the remaining 85.5% is chlorine. It is the most stable compound among all chlorinated derivatives of ethane and ethylene. It is resistant to hydrolysis and less corrosive than other chlorinated solvents. [19] It does not tend to polymerise like fluorine analogue tetrafluoroethylene, C2F4.

Tetrachloroethylene may react violently with alkali or alkaline earth metals, alkalis (sodium hydroxide and potassium hydroxide), nitric acid, beryllium, barium and aluminium. [20]

Oxidation

Oxidation of tetrachloroethylene by ultraviolet radiation in air produces trichloroacetyl chloride and phosgene:

4 C2Cl4 + 3 O2 → 2 CCl3COCl + 4 COCl2

This reaction can be halted by using amines and phenols (usually N-methylpyrrole and N-methylmorpholine) as stabilisers. But the reaction can be done intentionally to produce trichloroacetyl chloride. [19]

Reduction

Tetrachloroethylene can be partially or completely reduced in the gas phase in the presence of catalysts such as nickel, palladium etc.:

C2Cl4 + 2 H2 → 2 C + 4 HCl

Chlorination

Hexachloroethane is formed when tetrachloroethylene reacts with chlorine at 50–80 °C in the presence of a small amount of iron(III) chloride (0.1%) as a catalyst: [21]

C2Cl4 + Cl2 → C2Cl6

CFC-113 is produced by the reaction of tetrachloroethylene with chlorine and HF in the presence of antimony pentafluoride: [22]

C2Cl4 + 3 HF + Cl2 → CClF2CCl2F + 3 HCl

Nitration

Tetrachlorodinitroethane can be obtained by nitration of tetrachloroethylene with fuming nitric acid (conc. HNO3 rich in nitrogen oxides) or nitrogen tetroxide: [23]

Cl2CCCl2 + N2O4 → NO2Cl2CCCl2NO2

The preparation of this crystalline solid compound from Tetrachloroethylene and nitrogen tetroxide was first described by Hermann Kolbe in 1869. [23]

Thermal decomposition

Tetrachloroethylene begins to thermally decompose at 400 °C, decomposition accelerates around 600 °C, and completely decomposes at 800 °C. Organic decomposition products identified were trichlorobutene, 1,3-dichloro-2-propanone, tetrachlorobutadiene, dichlorocyclopentane, dichloropentene, methyl trichloroacetate, tetrachloroacetone, tetrachloropropene, trichlorocyclopentane, trichloropentene, hexachloroethane, pentachloropropene, hexachloropropene, hexachlorobutadiene. [24]

Health and safety

Tetrachloroethylene is much less toxic than other chlorinated solvents. [8] The acute and chronic toxicity of tetrachloroethylene is moderate to low. Reports of human injury are uncommon despite its wide usage in dry cleaning and degreasing. [25]

Despite the advantages of tetrachloroethylene, many[ who? ] have called for its replacement from widespread commercial use. It has been described as a possible "neurotoxicant, liver and kidney toxicant and reproductive and developmental toxicant (...) a 'potential occupational carcinogen'". [26] [ better source needed ]

As an anthelmintic, tetrachloroethylene was given orally to approximately fifty thousand people between 1925 and 1943. The most severe side effects were nausea and vomiting due to the irritation of gastric tract. Most reported poisonings were manifestations of its narcotic effects. [27]

Metabolism

Tetrachloroethylene's biological half-life is approximately 3 days. [28] About 98% of the inhaled Tetrachloroethylene is exhaled unchanged and only about 1–3% is metabolised to tetrachloroethylene oxide which rapidly isomerises into trichloroacetyl chloride. Trichloroacetyl chloride hydrolyses to trichloroacetic acid. [29] [28]

Carcinogenicity

Tetrachloroethylene has been classified as "probably carcinogenic to humans" (Group 2A) by the International Agency for Research on Cancer (IARC). There is a possibility that it is carcinogenic to humans in long-term exposure, but the evidence is limited since most of the evaluated dry-cleaners had heavy smoking and drinking habits which are known to cause multiple types of cancer. [30] Epidemiological research has been conducted in the dry-cleaning industry because of the widespread use of tetrachloroethylene in the industry since 1960. The evidence demonstrates a positive association between tetrachloroethylene exposure, bladder cancer, non-Hodgkin lymphoma, and multiple myeloma in adults. A review of 109 occupational studies estimated a mean exposure of 59 ppm in dry-cleaning employees. Epidemiological evidence shows that exposure via ingestion or inhalation can increase tumor incidence. [31] Exposure to tetrachloroethylene in a typical dry cleaning shop is considered far below the levels required to cause any risk. [32]

Testing for exposure

Tetrachloroethylene exposure can be evaluated by a breath test, analogous to breath-alcohol measurements. Also, for acute exposures, tetrachloroethylene in expired air can be measured. [33] Tetrachloroethylene can be detected in the breath for weeks following a heavy exposure. Tetrachloroethylene and its metabolite trichloroacetic acid, can be detected in the blood.

In Europe, the Scientific Committee on Occupational Exposure Limits (SCOEL) recommends for tetrachloroethylene an occupational exposure limit (8-hour time-weighted average) of 20 ppm and a short-term exposure limit (15 min) of 40 ppm. [34]

Remediation and degradation

In principle, tetrachloroethylene contamination can be remediated by chemical treatment. Chemical treatment involves reducing metals such as iron powder. [35]

Bioremediation usually entails reductive dechlorination under anaerobic conditions by Dehalococcoides spp. [36] Under aerobic conditions, degradation may occur via cometabolism by Pseudomonas sp. [37] Products of biological reductive dechlorination include trichloroethene, cis-1,2-dichloroethene, vinyl chloride, ethene and chloride.

Explanatory notes

  1. Also spelt as perchlorethylene, especially in older texts.

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

<span class="mw-page-title-main">Dry cleaning</span> Cleaning of fabrics in non-aqueous solvents

Dry cleaning is any cleaning process for clothing and textiles using a solvent other than water. Clothes are instead soaked in a water-free liquid solvent. Tetrachloroethylene (perchloroethylene), known in the industry as "perc", is the most commonly used solvent, although alternative solvents such as 1-bromopropane and hydrocarbons are also used.

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

<span class="mw-page-title-main">Carbon tetrachloride</span> Chemical compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC) is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

<span class="mw-page-title-main">Dichloromethane</span> Chemical compound

Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.

<span class="mw-page-title-main">1,1,1-Trichloroethane</span> Solvent, now banned for ozone depletion

The organic compound 1,1,1-trichloroethane, also known as methyl chloroform and chlorothene, is a chloroalkane with the chemical formula CH3CCl3. It is an isomer of 1,1,2-trichloroethane. This colorless, sweet-smelling liquid was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and its use is being rapidly phased out.

<span class="mw-page-title-main">Trichloroethylene</span> C2HCl3, widely used industrial solvent

Trichloroethylene (TCE) is a halocarbon with the formula C2HCl3, commonly used as an industrial degreasing solvent. It is a clear, colourless, non-flammable, volatile liquid with a chloroform-like pleasant mild smell and sweet taste. Its IUPAC name is trichloroethene. Trichloroethylene has been sold under a variety of trade names. Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri. Under the trade names Trimar and Trilene, it was used as a volatile anesthetic and as an inhaled obstetrical analgesic. It should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.

In organochlorine chemistry, reductive dechlorination describes any chemical reaction which cleaves the covalent bond between carbon and chlorine via reductants, to release chloride ions. Many modalities have been implemented, depending on the application. Reductive dechlorination is often applied to remediation of chlorinated pesticides or dry cleaning solvents. It is also used occasionally in the synthesis of organic compounds, e.g. as pharmaceuticals.

Halocarbon compounds are chemical compounds in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds. Chlorine halocarbons are the most common and are called organochlorides.

Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds containing at least one covalently bonded atom of chlorine. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

<span class="mw-page-title-main">Thiophosgene</span> Chemical compound

Thiophosgene is a red liquid with the formula CSCl2. It is a molecule with trigonal planar geometry. There are two reactive C–Cl bonds that allow it to be used in diverse organic syntheses.

<span class="mw-page-title-main">Hexachloroethane</span> Chemical compound

Hexachloroethane (perchloroethane) is an organochlorine compound with the chemical formula (CCl3)2. It is a white or colorless solid at room temperature with a camphor-like odor. It has been used by the military in smoke compositions, such as base-eject smoke munitions.

Jig-A-Loo is a silicone-based lubricant and water-repellent spray. The manufacturer states that it contains no oil, grease, wax, petroleum distillates or detergent and that it doesn't stain or smell after application. It is indicated for use on wood, metal, glass, rubber, leather, fabrics and most plastics. It has been used in the commercial and industrial sectors in Canada since 1958, and was launched in 1998 to the Canadian mass retail market, and globally in 2007.

<span class="mw-page-title-main">Hexachlorobutadiene</span> Chemical compound

Hexachlorobutadiene, (often abbreviated as "HCBD") Cl2C=C(Cl)C(Cl)=CCl2, is a colorless liquid at room temperature that has an odor similar to that of turpentine. It is a chlorinated aliphatic diene with niche applications but is most commonly used as a solvent for other chlorine-containing compounds. Structurally, it has a 1,3-butadiene core, but fully substituted with chlorine atoms.

1,1,2-Trichloro-1,2,2-trifluoroethane, also called trichlorotrifluoroethane or CFC-113, is a chlorofluorocarbon. It has the formula Cl2FC−CClF2. This colorless, volatile liquid is a versatile solvent.

<span class="mw-page-title-main">Perchloromethyl mercaptan</span> Chemical compound

Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.

<span class="mw-page-title-main">Pentachloroethane</span> Chemical compound

Pentachloroethane is a chemical compound of chlorine, hydrogen, and carbon with the chemical formula C2HCl5. It is a colourless non-flammable liquid that is used as a solvent for oil and grease, in metal cleaning, and in the separation of coal from impurities.

<span class="mw-page-title-main">Octachloropropane</span> Chemical compound

Octachloropropane or perchloropropane is the chemical compound with elemental formula C3Cl8 and structural formula Cl3C−CCl2−CCl3. Its molecule has a simple chain of three carbon atoms connected by single bonds, with chlorine atoms filling their remaining bonds. It is a chlorocarbon, specifically the third simplest perchloroalkane. It can be described as a derivative of propane C3H8, with all hydrogen atoms replaced by chlorine.

<span class="mw-page-title-main">Tetrachloroethylene oxide</span> Chemical compound

Tetrachloroethylene oxide, perchloroethylene oxide (PCEO) or tetrachlorooxirane, is the perchlorinated analogue of ethylene oxide and a proposed metabolite of tetrachloroethylene. It is a halogenated epoxide with the formula C2Cl4O. Tetrachloroethylene oxide is fairly stable but rearranges to trichloroacetyl chloride at higher temperatures.

References

  1. C. Chabrie "General Method for the Preparation of Carbon Fluorides" in Journal - Chemical Society, London. (1890). UK: Chemical Society.
  2. Justus Liebigs Annalen der Chemie. (1845). Germany: Verlag Chemie. Page 277
  3. 1 2 3 4 5 NIOSH Pocket Guide to Chemical Hazards. "#0599". National Institute for Occupational Safety and Health (NIOSH).
  4. "Compound Summary: Tetrachloroethylene". PubChem . Retrieved 9 September 2020.
  5. Sigma Aldrich Tetrachloroethylene MSDS
  6. Fischer Scientific Tetrachloroethylene MSDS
  7. "Tetrachloroethylene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  8. 1 2 Ethel Browning, Toxicity of Industrial Organic Solvents (1953, [ https://archive.org/details/cftri.3112toxicityofindust0000ethe/page/182/mode/1up pages 182-185]
  9. V. Regnault (1839) "Sur les chlorures de carbone CCl et CCl2" (On the chlorides of carbon CCl and CCl2 ), Annales de Chimie et de Physique, vol. 70, pages 104-107. Reprinted in German as: V. Regnault (1839). "Ueber die Chlorverbindungen des Kohlenstoffs, C2Cl2 und CCl2". Annalen der Pharmacie. 30 (3): 350–352. doi:10.1002/jlac.18390300310.
  10. Transactions of the Pharmaceutical Meetings. (1847). UK: J. Churchill. page 548
  11. W. Ramsay and S. Young, Jahresberichte, 1886, p. 628
  12. 1 2 M. Rossberg et al. "Chlorinated Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a06_233.pub2
  13. Gribble, G. W. (1996). "Naturally occurring organohalogen compounds – A comprehensive survey". Progress in the Chemistry of Organic Natural Products. 68 (10): 1–423. doi:10.1021/np50088a001. PMID   8795309.
  14. Amos, J. Lawrence (1990). "Chlorinated solvents". In Boundy, Ray H.; Amos, J. Lawrence (eds.). A History of the Dow Chemical Physics Lab : the freedom to be creative. New York and Basel: Marcel Dekker, Inc. pp. 71–79.
  15. Young, M.D.; et al. (1960). "The Comparative Efficacy of Bephenium Hydroxynaphthoate and Tetrachloroethylene against Hookworm and other Parasites of Man". American Journal of Tropical Medicine and Hygiene. 9 (5): 488–491. doi:10.4269/ajtmh.1960.9.488. PMID   13787477.
  16. "Clinical Aspects and Treatment of the More Common Intestinal Parasites of Man (TB-33)". Veterans Administration Technical Bulletin 1946 & 1947. 10: 1–14. 1948.
  17. “Maurice C. Hall.” Special Collections, USDA National Agricultural Library. https://www.nal.usda.gov/exhibits/speccoll/items/show/8197
  18. Davison, Forrest Ramon, Synopsis of materia medica, toxicology, and pharmacology for students and practitioners of medicine (1940), s. 181
  19. 1 2 Rossberg M., Lendle W., Pfleiderer G., Tögel A., Dreher E.-L., Langer E., Rassaerts H., Kleinschmidt P., Strack H., Cook R., Beck U., Lipper K.-A., Torkelson T. R., Löser E., Beutel K. K., Mann T.. "Chlorinated Hydrocarbons", Ullmann's Encyclopedia of Industrial Chemistry. 2006. Wiley-VCH, Weinheim. doi : 10.1002/14356007.a06_233.pub2
  20. Pohanish, R.P. (editor), Sittig's Handbook of Toxic and Hazardous Chemical Carcinogens 6th Edition (2012), p. 2520
  21. Oshin LA, Промышленные хлорорганические продукты (Promyshlennyye khlororganicheskie produkty). 1978.
  22. Knunyatsya IL. Химическая энциклопедия (Khimicheskaya Entsiklopediya). 1992. ISBN 5-85270-039-8
  23. 1 2 Argo, W. L.; James, E. M.; Donnelly, J. L. (November 1919). "Tetrachlordinitroethane". The Journal of Physical Chemistry. 23 (8): 578–585. doi:10.1021/j150197a004.
  24. Akio Yasuhara, Thermal decomposition of tetrachloroethylene Chemosphere, 26-8, April 1993, p. 1507-1512,
  25. E.-L. Dreher; T. R. Torkelson; K. K. Beutel (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o06_o01. ISBN   978-3527306732.
  26. Ceballos, Diana M.; Fellows, Katie M.; Evans, Ashley E.; Janulewicz, Patricia A.; Lee, Eun Gyung; Whittaker, Stephen G. (2021). "Perchloroethylene and Dry Cleaning: It's Time to Move the Industry to Safer Alternatives". Frontiers in Public Health. 9: 638082. doi: 10.3389/fpubh.2021.638082 . PMC   7973082 . PMID   33748070.
  27. Ellen B. Foot, Virginia Apgar and Kingsley Bishop, [https://archive.org/details/sim_anesthesiology_1943-05_4_3/page/283/mode/1up Tetrachlorethylene as an Anesthetic Agent], in Anesthesiology, 1943-05: Vol 4 Iss 3
  28. 1 2 Biological Monitoring: An Introduction. (1993). page 470
  29. Toxicological Profile for Tetrachloroethylene: Draft. (1995). U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  30. "Tetrachloroethylene (IARC Summary & Evaluation, Volume 63, 1995)". www.inchem.org.
  31. Guyton, KZ; Hogan, KA; Scott, CS; et al. (14 February 2014). "Human health effects of tetrachloroethylene: key findings and scientific issues". Environ Health Perspect. 122 (4): 325–334. doi:10.1289/ehp.1307359. PMC   3984230 . PMID   24531164.
  32. Azimi Pirsaraei, S. R.; Khavanin, A; Asilian, H; Soleimanian, A (2009). "Occupational exposure to perchloroethylene in dry-cleaning shops in Tehran, Iran". Industrial Health. 47 (2): 155–9. doi: 10.2486/indhealth.47.155 . PMID   19367044.
  33. "Tetrachloroethylene Toxicity: Section 3.1. Evaluation and Diagnosis | Environmental Medicine | ATSDR". www.atsdr.cdc.gov. 9 February 2021. Retrieved 2 March 2023.
  34. "SCOEL recommendations". 22 April 2011. Retrieved 22 April 2011.
  35. Timothy J. Campbell, David R. Burris, A. Lynn Roberts, J. Raymond Wells, Trichloroethylene and tetrachloroethylene reduction in a metallic iron–water-vapor batch system (October 2009), Environmental Toxicology and Chemistry, 16-4, pp. 625-630
  36. Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A. (2017). "Anaerobic biodegradation of (Emerging) organic contaminants in the aquatic environment". Water Research. 116: 268–295. Bibcode:2017WatRe.116..268G. doi: 10.1016/j.watres.2017.02.001 . PMID   28347952.
  37. Ryoo, D.; Shim, H.; Arenghi, F. L. G.; Barbieri, P.; Wood, T. K. (2001). "Tetrachloroethylene, Trichloroethylene, and Chlorinated Phenols Induce Toluene-o-xylene Monooxoygenase Activity in Pseudomonas stutzeri OX1". Appl Microbiol Biotechnol. 56 (3–4): 545–549. doi:10.1007/s002530100675. PMID   11549035. S2CID   23770815.

Further reading