Trematode life cycle stages

Last updated

Life-history stages of the trematode flatworm Fasciola hepatica from 1911 Encyclopaedia Britannica TrematodesFig8 EncBrit1911.png
Life-history stages of the trematode flatworm Fasciola hepatica from 1911 Encyclopædia Britannica

Trematodes are parasitic flatworms of the class Trematoda, specifically parasitic flukes with two suckers: one ventral and the other oral. Trematodes are covered by a tegument, that protects the organism from the environment by providing secretory and absorptive functions.

Contents

The life cycle of a typical trematode begins with an egg. Some trematode eggs hatch directly in the environment (water), while others are eaten and hatched within a host, typically a mollusc. The hatchling is called a miracidium, a free-swimming, ciliated larva. Miracidia will then grow and develop within the intermediate host into a sac-like structure known as a sporocyst or into rediae, either of which may give rise to free-swimming, motile cercariae larvae. The cercariae then could either infect a vertebrate host or a second intermediate host. Adult metacercariae or mesocercariae, depending on the individual trematode's life cycle, will then infect the vertebrate host or be rejected and excreted through the rejected host's faeces or urine. [1]

Typical life cycle stages

Metacercariae of Clinostomum phalacrocoracis in fish Parasite140042-fig2 Clinostomum phalacrocoracis metacercariae in fish.tif
Metacercariae of Clinostomum phalacrocoracis in fish
Bucephalid cercaria larva from Ernst Haeckel's Kunstformen der Natur (1904): The tail's furcae give the impression of horns, hence the genus name Bucephalus meaning "ox head". Haeckel Platodes Bucephalus.png
Bucephalid cercaria larva from Ernst Haeckel's Kunstformen der Natur (1904): The tail's furcae give the impression of horns, hence the genus name Bucephalus meaning "ox head".

While the details vary with each species, the general life cycle stages are:

Egg

The egg is found in the faeces, sputum, or urine of the definitive host. Depending on the species, it will either be non-embryonated (immature) or embryonated (ready to hatch). The eggs of all trematodes (except schistosomes) are operculated. Some eggs are eaten by the intermediate host (snail) or they are hatched in their habitat (water).

Miracidium

Miracidia hatch from eggs either in the environment or in the intermediate host. They do not have a mouth; therefore they cannot eat and need to find a host quickly if they hatch in the environment. Energy is needed to develop into a sporocyst. The first intermediate host can differ for different trematodes. [3]

Sporocyst

Sporocysts are elongated sacs that produce either more sporocysts or rediae. This is where larvae can develop. [4]

Redia (plural: rediae)

After the sporocyst the larva forms. The first development from it forms the redia. [5] They have a mouth which allows them to have an advantage to their competitors because they can just consume them and will either produce more rediae or start to form cercariae.

Parasite competition in snail hosts

Co-infections of different parasite species within the same host could occur and cause competition between the rediae and sporocysts. Not all trematode species have a redia stage; some may just have a sporocyst stage depending on the life cycle. The rediae are dominant over sporocysts because they have mouths and are able to either eat their competitors' food or their competitors.[ citation needed ]

Cercaria (plural: cercariae)

The larval form of the parasite develops within the germinal cells of the sporocyst or redia. [6] A cercaria has a tapering head with large penetration glands. [7] It may or may not have a long swimming "tail", depending on the species. [6] The motile cercaria finds and settles in a host where it will become either an adult, a mesocercaria, or a metacercaria, according to species.

Cercaria is also used as a genus of trematodes, when adult forms are not known. [8] The usage dates back to Müller, in 1773. [9]

Adult

The fully developed mature stage. As an adult, it is capable of sexual reproduction.

Deviations from the typical life cycle

Not all trematodes follow the typical sequence of eggs, miracidia, sporocysts, rediae, cercariae, and adults. In some species, the redial stage is omitted, and sporocysts produce cercariae. In other species, the cercaria develops into an adult within the same host.

Many digenean trematodes require two hosts; one (typically a snail) where asexual reproduction occurs in sporocysts, the other a vertebrate (typically a fish) where the adult form engages in sexual reproduction to produce eggs. In some species (for example Ribeiroia ) the cercaria encysts, waits until their host is eaten by a third host, in whose gut it emerges and develops into an adult.

Most trematodes are hermaphroditic, but members of the family Schistosomatidae are dioecious. Males are shorter and stouter than the females. [7]

Representations of life cycles of several different trematode species

Life cycle stages of a digenean human parasite, Schistosoma japonicum Trematode lifecycle stages.png
Life cycle stages of a digenean human parasite, Schistosoma japonicum
Life cycle stages of a digenean fish parasite, Bucephalus polymorphus Bucephaluslifecycle.jpg
Life cycle stages of a digenean fish parasite, Bucephalus polymorphus
Life cycle stages of trematode species that cause "swimmer's itch" Cercarial LifeCycle.png
Life cycle stages of trematode species that cause "swimmer's itch"

See also

Related Research Articles

<span class="mw-page-title-main">Trematoda</span> Class of parasitic flatworms

Trematoda is a class of flatworms known as flukes or trematodes. They are obligate internal parasites with a complex life cycle requiring at least two hosts. The intermediate host, in which asexual reproduction occurs, is usually a snail. The definitive host, where the flukes sexually reproduce, is a vertebrate. Infection by trematodes can cause disease in all five traditional vertebrate classes: mammals, birds, amphibians, reptiles, and fish.

<span class="mw-page-title-main">Digenea</span> Class of flukes

Digenea is a class of trematodes in the Platyhelminthes phylum, consisting of parasitic flatworms with a syncytial tegument and, usually, two suckers, one ventral and one oral. Adults commonly live within the digestive tract, but occur throughout the organ systems of all classes of vertebrates. Once thought to be related to the Monogenea, it is now recognised that they are closest to the Aspidogastrea and that the Monogenea are more closely allied with the Cestoda. Around 6,000 species have been described to date.

<i>Fasciola hepatica</i> Species of fluke

Fasciola hepatica, also known as the common liver fluke or sheep liver fluke, is a parasitic trematode of the class Trematoda, phylum Platyhelminthes. It infects the livers of various mammals, including humans, and is transmitted by sheep and cattle to humans all over the world. The disease caused by the fluke is called fasciolosis or fascioliasis, which is a type of helminthiasis and has been classified as a neglected tropical disease. Fasciolosis is currently classified as a plant/food-borne trematode infection, often acquired through eating the parasite's metacercariae encysted on plants. F. hepatica, which is distributed worldwide, has been known as an important parasite of sheep and cattle for decades and causes significant economic losses in these livestock species, up to £23 million in the UK alone. Because of its relatively large size and economic importance, it has been the subject of many scientific investigations and may be the best-known of any trematode species. F. hepatica's closest relative is Fasciola gigantica. These two flukes are sister species; they share many morphological features and can mate with each other.

A cercaria is the larval form of the trematode class of parasites. It develops within the germinal cells of the sporocyst or redia. A cercaria has a tapering head with large penetration glands. It may or may not have a long swimming "tail", depending on the species. The motile cercaria finds and settles in a host where it will become either an adult, or a mesocercaria, or a metacercaria, according to species.

<i>Paragonimus westermani</i> Species of fluke

Paragonimus westermani is the most common species of lung fluke that infects humans, causing paragonimiasis. Human infections are most common in eastern Asia and in South America. Paragonimiasis may present as a sub-acute to chronic inflammatory disease of the lung. It was discovered by Coenraad Kerbert (1849–1927) in 1878.

<i>Echinostoma</i> Genus of flukes

Echinostoma is a genus of trematodes (flukes), which can infect both humans and other animals. These intestinal flukes have a three-host life cycle with snails or other aquatic organisms as intermediate hosts, and a variety of animals, including humans, as their definitive hosts.

<span class="mw-page-title-main">Paragonimiasis</span> Medical condition

Paragonimiasis is a food-borne parasitic disease caused by several species of lung flukes belonging to genus Paragonimus. Infection is acquired by eating crustaceans such as crabs and crayfishes which host the infective forms called metacercariae, or by eating raw or undercooked meat of mammals harboring the metacercariae from crustaceans.

<i>Leucochloridium paradoxum</i> Parasitic flatworm

Leucochloridium paradoxum, the green-banded broodsac, is a parasitic flatworm. Its intermediate hosts are land snails, usually of the genus Succinea. The pulsating, green broodsacs fill the eye stalks of the snail, thereby attracting predation by birds, the primary host. These broodsacs visually imitate caterpillars, a prey of birds. The adult parasite lives in the bird's cloaca, releasing its eggs into the faeces.

Metagonimoides oregonensis is a trematode, or fluke worm, in the family Heterophyidae. This North American parasite is found primarily in the intestines of raccoons, American minks, frogs in the genus Rana, and freshwater snails in the genus Goniobasis. It was first described in 1931 by E. W. Price. The parasite has a large distribution, from Oregon to North Carolina. Adult flukes vary in host range and morphology dependent on the geographical location. This results in different life cycles, as well as intermediate hosts, across the United States. On the west coast, the intermediate host is freshwater snails (Goniobasis), while on the east coast the intermediate host is salamanders (Desmognathus). The parasites on the west coast are generally much larger than on the east coast. For example, the pharynx as well as the body of the parasite are distinctly larger in Oregon than in North Carolina. The reverse pattern is observed on the east coast for uterine eggs, which are larger on the west coast. In snails, there is also a higher rate of infection in female snails than in males. Research on the life history traits of the parasites have been performed with hamsters and frogs as model species.

<i>Fasciolopsis</i> Genus of flukes

Fasciolopsis is a genus of trematodes. They are also known as giant intestinal flukes.

<i>Nanophyetus</i> Genus of flukes

Nanophyetus salmincola is a food-borne intestinal trematode parasite prevalent on the Pacific Northwest coast. The species may be the most common trematode endemic to the United States.

Schistosoma mekongi is a species of trematodes, also known as flukes. It is one of the five major schistosomes that account for all human infections, the other four being S. haematobium, S. mansoni, S. japonicum, and S. intercalatum. This trematode causes schistosomiasis in humans.

<i>Echinostoma revolutum</i> Species of fluke

Echinostoma revolutum is a trematode parasite of which the adults can infect birds and mammals, including humans. In humans, it causes echinostomiasis.

Echinostoma hortense is an intestinal fluke of the class Trematoda, which has been found to infect humans in East Asian countries such as Korea, China, and Japan. This parasite resides in the intestines of birds, rats and other mammals such as humans. While human infections are very rare in other regions of the world, East Asian countries have reported human infections up to about 24% of the population in some endemic sub-regions. E. hortense infections are zoonotic infections, which occurs from eating raw or undercooked freshwater fish. The primary disease associated with an E. hortense infection is called echinostomiasis, which is a general name given to diseases caused by Trematodes of the genus Echinostoma.

<i>Clinostomum marginatum</i> Species of fluke

Clinostomum marginatum is a species of parasitic fluke. It is commonly called the "Yellow grub". It is found in many freshwater fish in North America, and no fish so far is immune to this parasite. It is also found in frogs. Clinostomum marginatum can also be found in the mouth of aquatic birds such as herons and egrets. They are commonly present in the esophagus of fish-eating birds and reptiles. Eggs of these trematodes are shed in the feces of aquatic birds and released into water. Aquatic birds become hosts of this parasite by ingesting infected freshwater fish. The metacercariae are found right beneath the skin or in the muscles of host fish.

Megalodiscus temperatus is a Digenean in the phylum Platyhelminthes. This parasite belongs to the Cladorchiidae family and is a common parasite located in the urinary bladder and rectum of frogs. The primary host is frogs and the intermediate hosts of Megalodiscus temeperatus are freshwater snails in the genus Helisoma.

<i>Philophthalmus gralli</i> Species of fluke

Philophthalmus gralli, commonly known as the Oriental avian eye fluke, parasitises the conjunctival sac of the eyes of many species of birds, including birds of the orders Galliformes and Anseriformes. In Brazil this parasite was reported in native Anseriformes species. It was first discovered by Mathis and Leger in 1910 in domestic chickens from Hanoi, Vietnam. Birds are definitive hosts and freshwater snail species are intermediate hosts. Human cases of philophthalmosis are rare, but have been previously reported in Europe, Asia, and America.

Coitocaecum parvum is a digeneic trematode or flatworm (Platyhelminthes) that is parasitic to the intestine of the common bully or upland bully. The common and upland bully are freshwater fish of New Zealand that C. parvum uses as its definitive host. C. parvum is a hermaphroditic freshwater trematode that can omit its definitive host and produce eggs by selfing or progenesis inside its amphipod second intermediate host

<i>Metagonimus yokogawai</i> Species of fluke

Metagonimus yokogawai, or the Yokogawa fluke, is a species of a trematode, or fluke worm, in the family Heterophyidae.

Heterobilharzia is a genus of trematodes in the family Schistosomatidae. The species Heterobilharzia Americana is a parasite of the Southeastern United States and typically found in raccoons. Species of this genus are responsible for Schistosoma in canines. Cercariae found in freshwater may also cause Swimmer's itch in humans.

References

  1. Poulin, Robert; Cribb, Thomas H (2002). "Trematode life cycles: Short is sweet?". Trends in Parasitology. 18 (4): 176–83. doi:10.1016/S1471-4922(02)02262-6. PMID   11998706.
  2. Caffara, Monica; Davidovich, Nadav; Falk, Rama; Smirnov, Margarita; Ofek, Tamir; Cummings, David; Gustinelli, Andrea; Fioravanti, Maria L (2014). "Redescription of Clinostomum phalacrocoracis metacercariae (Digenea: Clinostomidae) in cichlids from Lake Kinneret, Israel". Parasite. 21: 32. doi:10.1051/parasite/2014034. PMC   4078730 . PMID   24986336.
  3. Galaktionov, K. V., & Dobrovolʹskiĭ, A. A. (2003). The biology and evolution of trematodes: An essay on the biology, morphology, life cycles, transmission, and evolution of digenetic trematodes. Dordrecht: Kluwer Academic.[ page needed ]
  4. Fried, Bernard, and Thaddeus K. Graczyk. Echinostomes as Experimental Models for Biological Research. Springer, 2011.[ page needed ]
  5. Fried, Bernard, and Thaddeus K. Graczyk. Echinostomes as Experimental Models for Biological Research. Springer, 2011.[ page needed ]
  6. 1 2 "Glossary". VPTH 603 Veterinary Parasitology. University of Pennsylvania School of Veterinary Medicine. Archived from the original on 18 July 2011. Retrieved 21 February 2011.
  7. 1 2 "Schistosoma". Australian Society for Parasitology. Retrieved 19 February 2011.
  8. Cercaria at WoRMS
  9. Vermium terrestrium et fluviatile seu animalium infusorium, helminthicorum et testaceorum, non marinorum, succinct historia. OF Müller, 1773