Tropopause

Last updated
The tropopause extends to high altitudes in the tropical latitudes and extends to low altitudes in the polar latitudes. Jetcrosssection.jpg
The tropopause extends to high altitudes in the tropical latitudes and extends to low altitudes in the polar latitudes.

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

Contents

Definition

The atmosphere of planet Earth: The tropopause is between the troposphere and the stratosphere. Earth Atmosphere.svg
The atmosphere of planet Earth: The tropopause is between the troposphere and the stratosphere.

Rising from the planetary surface of the Earth, the tropopause is the atmospheric level where the air ceases to become cool with increased altitude and becomes dry, devoid of water vapor. The tropopause is the boundary that demarcates the troposphere below from the stratosphere above, and is part of the atmosphere where there occurs an abrupt change in the environmental lapse rate (ELR) of temperature, from a positive rate (of decrease) in the troposphere to a negative rate in the stratosphere. The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies continuously through the atmosphere, while the temperature gradient has a discontinuity. [2]

Location

The troposphere is the lowest layer of the Earth's atmosphere; it starts at the planetary boundary layer, and is the layer in which most weather phenomena occur. The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator. [3] [4] In the absence of inversions and not considering moisture, the temperature lapse rate for this layer is 6.5 °C per kilometer, on average, according to the U.S. Standard Atmosphere. [5] A measurement of the tropospheric and the stratospheric lapse rates helps identify the location of the tropopause, since temperature increases with height in the stratosphere, and hence the lapse rate becomes negative. The tropopause location coincides with the lowest point at which the lapse rate is less than a prescribed threshold.

Since the tropopause responds to the average temperature of the entire layer that lies underneath it, it is at its maximum levels over the Equator, and reaches minimum heights over the poles. On account of this, the coolest layer in the atmosphere lies at about 17 km over the equator. Due to the variation in starting height, the tropopause extremes are referred to as the equatorial tropopause and the polar tropopause.

Given that the lapse rate is not a conservative quantity when the tropopause is considered for stratosphere-troposphere exchanges studies, there exists an alternative definition named dynamic tropopause. [6] It is formed with the aid of potential vorticity, which is defined as the product of the isentropic density, i.e. the density that is measurable by using potential temperature as the vertical coordinate, and the absolute vorticity, given that this quantity attains quite different values for the troposphere and the stratosphere. [7] Instead of using the vertical temperature gradient as the defining variable, the dynamic tropopause surface is expressed in potential vorticity units (PVU, 1 PVU = 10-6 K m2 kg-1 s-1 [8] ). Given that the absolute vorticity is positive in the Northern Hemisphere and negative in the Southern Hemisphere, the threshold value should be considered as positive north of the Equator and negative south of it. [9] Theoretically, to define a global tropopause in this way, the two surfaces arising from the positive and negative thresholds need to be matched near the equator using another type of surface such as a constant potential temperature surface. Nevertheless, the dynamic tropopause is useless at equatorial latitudes because the isentropes are almost vertical. [8] For the extratropical tropopause in the Northern Hemisphere the WMO established a value of 1.6 PVU, [8] :152 but greater values ranging between 2 and 3.5 PVU have been traditionally used. [10]

It is also possible to define the tropopause in terms of chemical composition. [11] For example, the lower stratosphere has much higher ozone concentrations than the upper troposphere, but much lower water vapor concentrations, so an appropriate boundary can be defined.

Tropical Tropopause Layer Cold Trap

In 1949 Alan West Brewer proposed that tropospheric air passes through the tropopause into the stratosphere near the equator, then travels through the stratosphere to temperate and polar regions, where it sinks into the troposphere. [12] This is now known as Brewer-Dobson circulation. Because gases primarily enter the stratosphere by passing through the tropopause in the tropics where the tropopause is coldest, water vapor is condensed out of the air that is entering the stratosphere. This ″tropical tropopause layer cold trap″ theory has become widely accepted. [13] This cold trap limits stratospheric water vapor to 3 to 4 parts per million. [14] Researchers at Harvard have suggested that the effects of Global Warming on air circulation patterns will weaken the tropical tropopause layer cold trap. [15]

Water vapor that is able to make it through the cold trap eventually rises to the top of the stratosphere, where it undergoes photodissociation into oxygen and hydrogen or hydroxide ions and hydrogen. [16] [17] This hydrogen is then able to escape the atmosphere. Thus, in some sense, the tropical tropopause layer cold trap is what prevents Earth from losing its water to space. James Kasting has predicted that in 1 to 2 billion years, as the Sun increases in luminosity, the temperature of the Earth will rise enough that the cold trap will no longer be effective, and so the Earth will dry out. [18]

Phenomena

The tropopause is not a fixed boundary. Vigorous thunderstorms, for example, particularly those of tropical origin, will overshoot into the lower stratosphere and undergo a brief (hour-order or less) low-frequency vertical oscillation. [19] Such oscillation results in a low-frequency atmospheric gravity wave capable of affecting both atmospheric and oceanic currents in the region.[ citation needed ]

Most commercial aircraft are flown in the lower stratosphere, just above the tropopause, during the cruise phase of their flights; in this region, the clouds and significant weather perturbations characteristic of the troposphere are usually absent. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 75% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Stratosphere</span> Layer of the atmosphere above the troposphere

The stratosphere is the second layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer. The temperature inversion is in contrast to the troposphere, near the Earth's surface, where temperature decreases with altitude.

<span class="mw-page-title-main">Atmosphere of Earth</span> Gas layer surrounding Earth

The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth creates pressure, absorbs most meteoroids and ultraviolet solar radiation, warms the surface through heat retention, allowing life and liquid water to exist on the Earth's surface, and reduces temperature extremes between day and night.

<span class="mw-page-title-main">Lapse rate</span> Vertical rate of change of temperature in atmosphere

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse, in the sense of a gradual fall. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated air lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.

<span class="mw-page-title-main">Rossby wave</span> Inertial wave occurring in rotating fluids

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby in the Earth's atmosphere in 1939. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

<span class="mw-page-title-main">Cloud physics</span> Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both, along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Index of meteorology articles</span>

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Runaway greenhouse effect</span> Climatic effect causing a planets atmosphere to trap heat and prevent cooling

A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation and continues to heat up until it can radiate outside of the absorption bands of the water vapour.

<span class="mw-page-title-main">Hot tower</span>

A hot tower is a tropical cumulonimbus cloud that reaches out of the lowest layer of the atmosphere, the troposphere, and into the stratosphere. These formations are called "hot" because of the large amount of latent heat released as water vapor condenses into liquid and freezes into ice within the cloud. Hot towers in regions of sufficient vorticity may acquire rotating updrafts; these are known as vortical hot towers In some instances, hot towers appear to develop characteristics of a supercell, with deep and persistent rotation present in the updraft. The role of hot towers in tropical weather was first formulated by Joanne Simpson in 1958. Hot towers dominated discussions in tropical meteorology in the 1960s and are now considered the main drivers of rising air within tropical cyclones and a major component of the Hadley circulation. Although the prevalence of hot towers in scientific literature decreased in the 1970s, hot towers remain an active area of research. The presence of hot towers in tropical cyclones is correlated with an increase in the tropical cyclones's intensities.

<span class="mw-page-title-main">Convective instability</span> Ability of an air mass to resist vertical motion

In meteorology, convective instability or stability of an air mass refers to its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements tend to become larger, resulting in turbulent airflow and convective activity. Instability can lead to significant turbulence, extensive vertical clouds, and severe weather such as thunderstorms.

Atmospheric thermodynamics is the study of heat-to-work transformations that take place in the Earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Hadley cell</span> Tropical atmospheric circulation feature

The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of 12–15 km (7.5–9.3 mi) above the Earth's surface, cooling and descending in the subtropics at around 25 degrees latitude, and then returning equatorward near the surface. It is a thermally direct circulation within the troposphere that emerges due to differences in insolation and heating between the tropics and the subtropics. On a yearly average, the circulation is characterized by a circulation cell on each side of the equator. The Southern Hemisphere Hadley cell is slightly stronger on average than its northern counterpart, extending slightly beyond the equator into the Northern Hemisphere. During the summer and winter months, the Hadley circulation is dominated by a single, cross-equatorial cell with air rising in the summer hemisphere and sinking in the winter hemisphere. Analogous circulations may occur in extraterrestrial atmospheres, such as on Venus and Mars.

<span class="mw-page-title-main">Tropical cyclogenesis</span> Development and strengthening of a tropical cyclone in the atmosphere

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

<span class="mw-page-title-main">Atmospheric convection</span> Atmospheric phenomenon

Atmospheric convection is the result of a parcel-environment instability in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day expands the height of the planetary boundary layer, leading to increased winds, cumulus cloud development, and decreased surface dew points. Convection involving moist air masses leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

<span class="mw-page-title-main">Atmospheric instability</span> Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air. Because it is warmer, it is less dense and is prone to further ascent.

<span class="mw-page-title-main">Cold-core low</span> Cyclone with an associated cold pool of air at high altitude

A cold-core low, also known as an upper level low or cold-core cyclone, is a cyclone aloft which has an associated cold pool of air residing at high altitude within the Earth's troposphere, without a frontal structure. It is a low pressure system that strengthens with height in accordance with the thermal wind relationship. If a weak surface circulation forms in response to such a feature at subtropical latitudes of the eastern north Pacific or north Indian oceans, it is called a subtropical cyclone. Cloud cover and rainfall mainly occurs with these systems during the day.

<span class="mw-page-title-main">Atmosphere of Jupiter</span> Layer of gases surrounding the planet Jupiter

The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in small amounts and include methane, ammonia, hydrogen sulfide, and water. Although water is thought to reside deep in the atmosphere, its directly measured concentration is very low. The nitrogen, sulfur, and noble gas abundances in Jupiter's atmosphere exceed solar values by a factor of about three.

<span class="mw-page-title-main">Atmospheric temperature</span> Physical quantity that expresses hot and cold in the atmosphere

Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation, humidity and altitude. When discussing surface air temperature, the annual atmospheric temperature range at any geographical location depends largely upon the type of biome, as measured by the Köppen climate classification. The abreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.

References

  1. International Meteorological Vocabulary (2nd ed.). Geneva: Secretariat of the World Meteorological Organization. 1992. p. 636. ISBN   978-92-63-02182-3.
  2. Panchev 1985, p. 129.
  3. Hoinka, K. P. (1999). "Temperature, Humidity, and Wind at the Global Tropopause". Monthly Weather Review . 127 (10): 2248–2265. Bibcode:1999MWRv..127.2248H. doi: 10.1175/1520-0493(1999)127<2248:THAWAT>2.0.CO;2 .
  4. Gettelman, A.; Salby, M. L.; Sassi, F. (2002). "Distribution and influence of convection in the tropical tropopause region". Journal of Geophysical Research . 107 (D10): ACL 6–1–ACL 6–12. Bibcode:2002JGRD..107.4080G. CiteSeerX   10.1.1.469.189 . doi:10.1029/2001JD001048.
  5. Petty 2008, p. 112.
  6. Andrews, Holton & Leovy 1987, p. 371.
  7. Hoskins, B. J.; McIntyre, M. E.; Robertson, A. W. (1985). "On the use and significance of isentropic potential vorticity maps". Quarterly Journal of the Royal Meteorological Society . 111 (470): 877–946. Bibcode:1985QJRMS.111..877H. doi:10.1002/qj.49711147002.
  8. 1 2 3 Tuck, A. F.; Browell, E. V.; Danielsen, E. F.; Holton, J. R.; Hoskins, B. J.; Johnson, D. R.; Kley, D.; Krueger, A. J.; Megie, G.; Newell, R. E.; Vaughan, G. (1985). "Strat-trop exchange". Atmospheric Ozone 1985 – WMO Global Ozone Research and Monitoring Project Report No. 16. World Meteorological Organization. 1: 151–240.
  9. Hoinka, Klaus P. (December 1998). "Statistics of the Global Tropopause Pressure". Journal of Climate . American Meteorological Society. 126 (126): 3303–3325. Bibcode:1998MWRv..126.3303H. doi: 10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2 .
  10. Zängl, Günther; Hoinka, Klaus P. (15 July 2001). "The Tropopause in the Polar Regions". Journal of Climate . 14 (14): 3117 –&#32, 3139. Bibcode:2001JCli...14.3117Z. doi: 10.1175/1520-0442(2001)014<3117:ttitpr>2.0.co;2 .
  11. L. L. Pan; W. J. Randel; B. L. Gary; M. J. Mahoney; E. J. Hintsa (2004). "Definitions and sharpness of the extratropical tropopause: A trace gas perspective" (PDF). Journal of Geophysical Research . 109 (D23): D23103. Bibcode:2004JGRD..10923103P. doi: 10.1029/2004JD004982 . hdl:1912/3670.
  12. Brewer, A. W. (Oct 1949). "Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere". Quarterly Journal of the Royal Meteorological Society. 75 (326): 351–363. Bibcode:1949QJRMS..75..351B. doi:10.1002/qj.49707532603.
  13. Hasebe, F.; Inai, Y.; Shiotani, M.; Fujiwara, M.; Vömel, H.; Nishi, N.; Ogino, S.-Y.; Shibata, T.; Iwasaki, S.; Komala, N.; Peter, T.; Oltmans, S. J. (Apr 2013). "Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific". Atmospheric Chemistry and Physics. 13 (8): 4393–4411. Bibcode:2013ACP....13.4393H. doi: 10.5194/acp-13-4393-2013 . hdl: 20.500.11850/67923 .
  14. Catling, David C.; Kasting, James F. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Bibcode:2017aeil.book.....C.
  15. Bourguet, Stephen; Linz, Marianna (2023). "Weakening of the tropical tropopause layer cold trap with global warming". Atmospheric Chemistry and Physics. 23 (13): 7447–7460. Bibcode:2023ACP....23.7447B. doi: 10.5194/acp-23-7447-2023 . S2CID   259520137.
  16. Lewis, B. R.; Vardavas, I. M.; Carver, J. H. (June 1983). "The aeronomic dissociation of water vapor by solar H Lyman α radiation". Journal of Geophysical Research. 88 (A6): 4935–4940. Bibcode:1983JGR....88.4935L. doi:10.1029/JA088iA06p04935.
  17. Nicolet, Marcel (July 1984). "On the photodissociation of water vapour in the mesosphere". Planetary and Space Science. 32 (7): 871–880. Bibcode:1984P&SS...32..871N. doi:10.1016/0032-0633(84)90011-4.
  18. Caldeira, K; Kasting, J F (December 1992). "The life span of the biosphere revisited". Nature. 360 (6406): 721–23. Bibcode:1992Natur.360..721C. doi:10.1038/360721a0. PMID   11536510. S2CID   4360963.
  19. Shenk, W. E. (1974). "Cloud top height variability of strong convective cells". Journal of Applied Meteorology . 13 (8): 918–922. Bibcode:1974JApMe..13..917S. doi: 10.1175/1520-0450(1974)013<0917:cthvos>2.0.co;2 .
  20. Petty 2008, p. 21.

Bibliography