Volvox carteri

Last updated

Contents

Volvox carteri
Volvox carteri.png
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Chlorophyceae
Order: Chlamydomonadales
Family: Volvocaceae
Genus: Volvox
Species:
V. carteri
Binomial name
Volvox carteri
F.Stein 1878

Volvox carteri [1] is a species of colonial green algae in the order Volvocales. [2] The V. carteri life cycle includes a sexual phase and an asexual phase. V. carteri forms small spherical colonies, or coenobia, of 2000–6000 Chlamydomonas-type somatic cells and 12–16 large, potentially immortal reproductive cells called gonidia. [3] While vegetative, male and female colonies are indistinguishable; [4] however, in the sexual phase, females produce 35-45 eggs [4] and males produce up to 50 sperm packets with 64 or 128 sperm each. [5]

The genome of this species of algae was sequenced in 2010. [6] Volvox carteri is a significant model organism for research into the evolution of multicellularity and organismal complexity, largely due to its simple differentiation into two cell types, versatility in controlled laboratory environments, and natural abundance. [7]

Differentiation

Volvox carteri is a useful model organism for understanding the evolution and developmental genetics of cellular differentiation, in part because asexual colonies possess only two cell types. Approximately 2000 biflagellated somatic cells form a monolayer at the surface of the extracellular matrix (ECM) and cannot divide, rendering them mortal. [8] They facilitate motility in response to changes in light concentration (phototaxis), which is detected via an orange photoreceptor-containing eyespot. [8] Gonidia, by contrast, are immobile, embedded in the ECM interior, and are potentially immortal due to their ability to divide and participate in reproduction. [8]

Three key genes are known to play significant roles in the somatic-gonidium dichotomy: glsA (gonidialess A); regA (regenerator A); and lag (late gonidia). These genes are believed to carry out germ-soma differentiation during development in a general order: [9]

  1. gls specifies cell fate based on size
  2. lag genes facilitate gonidial development in large cells
  3. reg genes facilitate somatic development in small cells

The glsA gene contributes to asymmetric cell division that results in the designation of large cells that develop into gonidia and small cells that develop into somatic cells. [10] Gls mutants do not experience asymmetric division, a key component for creating gonidia, and thus are composed only of somatic swimming cells. [9]

The lag gene plays a role in specialization of gonidial initials. [9] If mutations disable the lag gene, large cells specified by glsA will develop as somatic cells initially but then de-differentiate to become gonidia. [11]

Determination of somatic cells is controlled by the transcription factor regA. [12] The regA geneencodes a single 80 amino acid-long DNA-binding SAND domain [13] that is expressed in somatic cells after embryonic development. [13] [14] regA acts to prevent division by inhibiting cell growth via downregulation of chloroplast biosynthesis, [14] and represses expression of genes necessary for germ cell formation. [12] Chlamydomonas reinhardtii, a unicellular relative of V. carteri, is known to possess genes related to regA. [13] This suggests that the regA gene originated before proper cellular differentiation in Volvox and was likely present in an undifferentiated ancestor. [13]  In this case, the function of regA in V. carteri most likely arose due to changes in expression pattern from a temporal (environmental response) state to a spatial (developmental) state. [15] [16]

Genomics

The V. carteri genome consists of 138 million base pairs and contains c. 14,520 protein-coding genes. [6] Like many other multicellular organisms, this alga has a genome rich in introns; [6] approximately 82% of the genome is non-coding. [6] The V. carteri genome has a GC content of approximately 55.3%. [6] [17]

Over 99% of the volume of a V. carteri colony is made up of a glycoprotein-rich extracellular matrix (ECM). Several genes involved in ECM construction and ECM proteins have been identified in V. carteri. [8] These genes account for the expanded inner layer of the cell wall (ECM) and the count and diversity of genes encoding VMPs (Volvox matrix metalloproteases) and pherophorins (ECM protein families). [6]

Volvox has multiple sex-specific and sex-regulated transcripts, including MAT3, an rb-homologous tumor suppressor that displays evidence of sex-specific selection and whose alternative splicing is sexually regulated. [17]

Sexual reproduction

V. carteri can reproduce both asexually or sexually. Thus, it is a facultatively sexual organism. In nature, Volvox reproduces asexually in temporary ponds in spring, but becomes sexual and produces dormant over-wintering zygotes before the ponds dry up in the summer heat. V. carteri can be induced to reproduce sexually by heat shock treatment. [18] However, this induction can be inhibited by antioxidants indicating that the induction of sex by heat shock is mediated by oxidative stress. [19] It was further found that an inhibitor of the mitochondrial electron transport chain that induces oxidative stress also induced sex in V. carteri. [20] It has been suggested that oxidative DNA damage caused by oxidative stress may be the underlying cause of the induction of sex in their experiments. [19] [20] Other agents that cause DNA damage (i.e. glutaraldehyde, formaldehyde and UV) also induce sex in V. carteri. [21] [22] [23] These findings lend support to the general idea that a principal adaptive function of sex is repair of DNA damages. [24] [25] [26] [27]

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can reproduce asexually.

<span class="mw-page-title-main">Meiosis</span> Cell division producing haploid gametes

Meiosis is a special type of cell division of germ cells and apicomplexans in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and a female will fuse to create a zygote, a cell with two copies of each chromosome again.

<i>Volvox</i> Genus of algae

Volvox is a polyphyletic genus of chlorophyte green algae in the family Volvocaceae. Volvox species form spherical colonies of up to 50,000 cells, and for this reason they are sometimes called globe algae. They live in a variety of freshwater habitats, and were first reported by Antonie van Leeuwenhoek in 1700. Volvox diverged from unicellular ancestors approximately 200 million years ago.

<span class="mw-page-title-main">Cellular differentiation</span> Developmental biology

Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. However, metabolic composition does get altered quite dramatically where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.

A cell type is a classification used to identify cells that share morphological or phenotypical features. A multicellular organism may contain cells of a number of widely differing and specialized cell types, such as muscle cells and skin cells, that differ both in appearance and function yet have identical genomic sequences. Cells may have the same genotype, but belong to different cell types due to the differential regulation of the genes they contain. Classification of a specific cell type is often done through the use of microscopy. Recent developments in single cell RNA sequencing facilitated classification of cell types based on shared gene expression patterns. This has led to the discovery of many new cell types in e.g. mouse cortex, hippocampus, dorsal root ganglion and spinal cord.

<span class="mw-page-title-main">Volvocaceae</span> Family of algae

The Volvocaceae are a family of unicellular or colonial biflagellates, including the typical genus Volvox. The family was named by Ehrenberg in 1834, and is known in older classifications as the Volvocidae. All species are colonial and inhabit freshwater environments.

In cellular biology, a somatic cell, or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism and divide through mitosis.

<span class="mw-page-title-main">Unicellular organism</span> Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Most prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.8–4.8 billion years ago.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Biological life cycle</span> Series of stages of an organism

In biology, a biological life cycle is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the process repeating in a cyclic fashion.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Germline</span> Population of a multicellular organisms cells that pass on their genetic material to the progeny

In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes, which can come together to form a zygote. They differentiate in the gonads from primordial germ cells into gametogonia, which develop into gametocytes, which develop into the final gametes. This process is known as gametogenesis.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms. Currently, the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate and, if the environment has not changed, then there may be little reason for variation, as the organism may already be well-adapted. However, very few environments have not changed over the millions of years that reproduction has existed. Hence it is easy to imagine that being able to adapt to changing environment imparts a benefit. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

<span class="mw-page-title-main">Anisogamy</span> Sexual reproduction involving a large, female gamete and a small, male gamete

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a sperm cell, whereas the larger gamete is female, typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals, gamete size difference is the fundamental difference between females and males.

<span class="mw-page-title-main">Natural competence</span> Ability of cells to alter their own genetics by taking up extracellular DNA

In microbiology, genetics, cell biology, and molecular biology, competence is the ability of a cell to alter its genetics by taking up extracellular ("naked") DNA from its environment in the process called transformation. Competence may be differentiated between natural competence, a genetically specified ability of bacteria which is thought to occur under natural conditions as well as in the laboratory, and induced or artificial competence, which arises when cells in laboratory cultures are treated to make them transiently permeable to DNA. Competence allows for rapid adaptation and DNA repair of the cell. This article primarily deals with natural competence in bacteria, although information about artificial competence is also provided.

<i>Gonium</i> Genus of algae

Gonium is a genus of colonial algae, a member of the order Chlamydomonadales. Typical colonies have 4 to 16 cells, all the same size, arranged in a flat plate, with no anterior-posterior differentiation. In a colony of 16 cells, four are in the center, and the other 12 are on the four sides, three each. A description by G.M. Smith :

Gonium Mueller 1773: Colonies of 4-8-16 cells arranged in a flat quadrangular plate and embedded in a common gelatinous matrix or connected by broad gelatinous strands. Cells ovoid to pyriform, with a single cup-shaped chloroplast containing one pyrenoid. Each cell with two cilia of equal length, contractile vacuoles at the base of the cilia, and an eyespot. Four- and eight-celled colonies with the cilia on the same side ; sixteen-celled colonies with the four central cells having their cilia on the same side and the twelve marginal cells with radially arranged cilia.

Asexual reproduction by simultaneous division of all cells in the colony to form autocolonies, or by a formation of 2-4 zoospores in each cell.

Sexual reproduction isogamous, by a fusion of biciliatezoogametes.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

<i>Ectocarpus siliculosus</i> Species of brown alga

Ectocarpus siliculosus is a filamentous brown alga. Its genome was the first brown macroalgal genome to be sequenced, with the expectation that E. siliculosus will serve as a genetic and genomic model for brown macroalgae.

The origin and function of meiosis are currently not well understood scientifically, and would provide fundamental insight into the evolution of sexual reproduction in eukaryotes. There is no current consensus among biologists on the questions of how sex in eukaryotes arose in evolution, what basic function sexual reproduction serves, and why it is maintained, given the basic two-fold cost of sex. It is clear that it evolved over 1.2 billion years ago, and that almost all species which are descendants of the original sexually reproducing species are still sexual reproducers, including plants, fungi, and animals.

Germ-Soma Differentiation is the process by which organisms develop distinct germline and somatic cells. The development of cell differentiation has been one of the critical aspects of the evolution of multicellularity and sexual reproduction in organisms. Multicellularity has evolved upwards of 25 times, and due to this there is great possibility that multiple factors have shaped the differentiation of cells. There are three general types of cells: germ cells, somatic cells, and stem cells. Germ cells lead to the production of gametes, while somatic cells perform all other functions within the body. Within the broad category of somatic cells, there is further specialization as cells become specified to certain tissues and functions. In addition, stem cell are undifferentiated cells which can develop into a specialized cell and are the earliest type of cell in a cell lineage. Due to the differentiation in function, somatic cells are found ony in multicellular organisms, as in unicellular ones the purposes of somatic and germ cells are consolidated in one cell.

References

  1. Stein, Friedrich Ritter (1878). "I. Hälfte, Den noch nicht abgeschlossenen allgemeinen Theil nebst erklärung". Der Organismus der Infusionsthiere nach eigenen forschungen in systematischere Reihenfolge bearbeitet. III. Abtheilung. Die Naturgeschichte der Flagellaten oder Geisselinfusorien (PDF) (in German). Wilhelm Engelmann. p. 134.
  2. Guiry, M.D.; Guiry, G.M. "Volvox carteri". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway.
  3. Lee, Robert Edward (2005) [1999]. Phycology (3rd ed.). Cambridge University Press.[ page needed ]
  4. 1 2 Geng, Sa; Miyagi, Ayano; Umen, James (2018). "Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae" (PDF). Development. 145 (7): dev162537. doi:10.1242/dev.162537. PMC   5963870 . PMID   29549112.
  5. Herron, Matthew; Rashidi, Armin; Shelton, Deborah; Driscoll, William (2013). "Cellular differentiation and individuality in the 'minor' multicellular taxa: Differentiation and individuality". Biological Reviews. 88 (4): 844–861. doi:10.1111/brv.12031. PMC   4103886 . PMID   23448295.
  6. 1 2 3 4 5 6 Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, et al. (2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–226. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC   2993248 . PMID   20616280.
  7. Kirk, David L. (1997). Volvox. Washington University in St. Louis: Cambridge University Press. pp. 13–15. ISBN   9780511529740.
  8. 1 2 3 4 Miller, Stephen M. (2010). "Volvox, Chlamydomonas, and the Evolution of Multicellularity". Nature Education. 3 (9): 65.
  9. 1 2 3 Wauchope, Akelia D. (2011). Advances in the molecular genetic analyses of Volvox carteri. UMT Dissertation Publishing. pp. 32–37.
  10. Kirk, David L.; Kaufman, MR; Keeling, RM; Stamer, KA (1991). "Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo". Dev. Suppl. 1: 67–82. PMID   1742501.
  11. Tam, L. W.; Stamer, K. A.; Kirk, D. L. (1991). "Early and late gene expression programs in developing somatic cells of Volvox carteri". Developmental Biology. 145 (1): 67–76. doi:10.1016/0012-1606(91)90213-M. PMID   2019325.
  12. 1 2 Herron, Matthew D. (2016). "Origins of multicellular complexity: Volvox and the volvocine algae" (PDF). Molecular Ecology. 25 (6): 1213–1223. doi:10.1111/mec.13551. PMC   5765864 . PMID   26822195.
  13. 1 2 3 4 Hanschen, Erik R.; Ferris, Patrick J.; Michod, Richard E. (2014). "Early evolution of the genetic basis for soma in the volvocaceae". Evolution. 68 (7): 2014–2025. doi:10.1111/evo.12416. PMID   24689915. S2CID   10284100.
  14. 1 2 Meissner, M; Stark, K; Cresnar, B; Kirk, DL; Schmitt, R (1999). "Volvox germline-specific genes that are putative targets of RegA repression encode chloroplast proteins". Current Genetics. 36 (6): 363–370. doi:10.1007/s002940050511. PMID   10654090. S2CID   40307559.
  15. Herron, Matthew D.; Nedelcu, Aurora M. (2015). "Volvocine Algae: From Simple to Complex Multicellularity". Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics. Vol. 2. pp. 129–152. doi:10.1007/978-94-017-9642-2_7. ISBN   978-94-017-9641-5.
  16. Nedelcu, Aurora M. (2009). "Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery". Journal of Molecular Evolution. 68 (3): 256–268. Bibcode:2009JMolE..68..256N. CiteSeerX   10.1.1.335.700 . doi:10.1007/s00239-009-9201-1. PMID   19209377. S2CID   814557.
  17. 1 2 Ferris, P.; Olson, B. J.; De Hoff, P. L.; Douglass, S.; Casero, D.; Prochnik, S.; Geng, S.; Rai, R.; Grimwood, J. (2010). "Evolution of an expanded sex-determining locus in Volvox". Science. 328 (5976): 351–354. Bibcode:2010Sci...328..351F. doi:10.1126/science.1186222. PMC   2880461 . PMID   20395508.
  18. Kirk DL, Kirk MM (January 1986). "Heat shock elicits production of sexual inducer in Volvox". Science. 231 (4733): 51–54. Bibcode:1986Sci...231...51K. doi:10.1126/science.3941891. PMID   3941891.
  19. 1 2 Nedelcu AM, Michod RE (November 2003). "Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage". Proceedings of the Royal Society B: Biological Sciences. 270 (Suppl 2): S136–9. doi:10.1098/rsbl.2003.0062. PMC   1809951 . PMID   14667362.
  20. 1 2 Nedelcu AM, Marcu O, Michod RE (August 2004). "Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes". Proceedings of the Royal Society B: Biological Sciences. 271 (1548): 1591–6. doi:10.1098/rspb.2004.2747. PMC   1691771 . PMID   15306305.
  21. Starr RC, Jaenicke L (1988). "Sexual induction in Volvox carteri f. nagariensis by aldehydes". Sex Plant Reprod. 1: 28–31. doi:10.1007/bf00227019. S2CID   21915238.
  22. Loshon CA, Genest PC, Setlow B, Setlow P (July 1999). "Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble spore proteins of the alpha/beta-type protect spores against this DNA damage". Journal of Applied Microbiology. 87 (1): 8–14. doi: 10.1046/j.1365-2672.1999.00783.x . PMID   10432583.
  23. Zeiger E, Gollapudi B, Spencer P (March 2005). "Genetic toxicity and carcinogenicity studies of glutaraldehyde—a review". Mutation Research. 589 (2): 136–51. doi:10.1016/j.mrrev.2005.01.001. PMID   15795166.
  24. Bernstein H, Byerly HC, Hopf FA, Michod RE (September 1985). "Genetic damage, mutation, and the evolution of sex". Science. 229 (4719): 1277–1281. Bibcode:1985Sci...229.1277B. doi:10.1126/science.3898363. PMID   3898363.
  25. Birdsell JA, Wills C (2003). "The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models". In MacIntyre RJ, Clegg MT (eds.). Evolutionary Biology. Vol. 33. Springer. pp. 27–137. doi:10.1007/978-1-4757-5190-1_2. ISBN   978-0306472619.
  26. Hörandl, E. (December 2009). "A combinational theory for maintenance of sex". Heredity. 103 (6): 445–457. doi:10.1038/hdy.2009.85. PMC   2854797 . PMID   19623209.
  27. Bernstein H, Bernstein C, Michod RE (2012). "Chapter 1: DNA repair as the primary adaptive function of sex in bacteria and eukaryotes". In Kimura S, Shimizu S (eds.). DNA Repair: New Research. Hauppauge, New York: Nova Science. pp. 1–49. ISBN   978-1-62100-808-8. Archived from the original on 29 October 2013.