CZTS

Last updated
CZTS
Kristallstruktur Kesterit.png
CZTS crystal structure. Orange: Cu, grey: Zn/Fe, blue: Sn, yellow: S.
Names
Other names
copper zinc tin sulfide
Identifiers
Properties
Cu2ZnSnS4
Molar mass 439.471 g/mol
AppearanceGreenish black crystals
Density 4.56 g/cm3 [1]
Melting point 990 °C (1,810 °F; 1,260 K) [2]
Band gap 1.4–1.5 eV [3] [4]
Structure
Tetragonal [1]
a = 0.5435 nm, c = 1.0843 nm, Z = 2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper zinc tin sulfide (CZTS) is a quaternary semiconducting compound which has received increasing interest since the late 2000s for applications in thin film solar cells. The class of related materials includes other I2-II-IV-VI4 such as copper zinc tin selenide (CZTSe) and the sulfur-selenium alloy CZTSSe. CZTS offers favorable optical and electronic properties similar to CIGS (copper indium gallium selenide), making it well suited for use as a thin-film solar cell absorber layer, but unlike CIGS (or other thin films such as CdTe), CZTS is composed of only abundant and non-toxic elements. Concerns with the price and availability of indium in CIGS and tellurium in CdTe, as well as toxicity of cadmium have been a large motivator to search for alternative thin film solar cell materials. The power conversion efficiency of CZTS is still considerably lower than CIGS and CdTe, with laboratory cell records of 11.0 % for CZTS and 12.6 % for CZTSSe as of 2019. [5]

Contents

Crystal structure

CZTS is a I2-II-IV-VI4 quaternary compound. From the chalcopyrite CIGS structure, one can obtain CZTS by substituting the trivalent In/Ga with a bivalent Zn and IV-valent Sn which forms in the kesterite structure.

Some literature reports have identified CZTS in the related stannite structure, but conditions under which a stannite structure may occur are not yet clear. First-principle calculations show that the crystal energy is only 2.86 meV/atom higher for the stannite than kesterite structure suggesting that both forms can coexist. [6] Structural determination (via techniques like X-ray diffraction) is hindered by disorder of the Cu-Zn cations, which are the most common defect as predicted by theoretical calculations and confirmed by neutron scattering. The near random ordering of Cu and Zn may lead to misidentification of the structure. Theoretical calculations predict the disorder of the Cu-Zn cations to lead to potential fluctuations in the CZTS and could therefore the cause for the large open circuit voltage deficit, the main bottle neck of state-of-the-art CZTS devices. The disorder can be reduced by temperature treatments. However, other temperature treatments alone do not seem to be able to yield highly ordered CZTS. [7] Other strategies need to be developed to reduce this defect, such as tuning of the CZTS composition.

Material properties

Carrier concentrations and absorption coefficient of CZTS are similar to CIGS. Other properties such as carrier lifetime (and related diffusion length) are low (below 9 ns) for CZTS. This low carrier lifetime may be due to high density of active defects or recombination at grain boundaries. Defect formation in CZTS is prevalent due to low defect formation energies of zinc-copper antisite defects and copper vacancies. [8] These defects create 'effective' charge in the crystal structure, which is stabilized by the aggregation of different defects that compensate for the charge disparity to become effectively neutral. As a result, electron-trapping states are formed, which enables recombination. Having deep-level defect states lowers the open-circuit voltage and the conversion efficiency of a CZTS solar cell.

Many secondary phases are possible in quaternary compounds like CZTS and their presence can affect the solar cell performance. Secondary phases can provide shunting current paths through the solar cell or act as recombination centers, both degrading solar cell performance. From the literature it appears that all secondary phases have a detrimental effect on CZTS performance, and many of them are both hard to detect and commonly present. Common phases include ZnS, SnS, CuS, and Cu2SnS3. Identification of these phases is challenging by traditional methods like X-ray diffraction (XRD) due to the peak overlap of ZnS and Cu2SnS3 with CZTS. Some impurities such as ZnS and Cu8GeS6 can be selectively removed from the CZTS or CZGS by treatment with hot diluted HCl. [9] Polymorphism could be another source of defects in CZTS. Band gap of different polymorphs have been found to range from 1.12 to 1.45 eV. Other methods like Raman scattering are being explored to help characterize CZTS polymorphs. [10]

Fabrication

CZTS has been prepared by a variety of vacuum and non-vacuum techniques. They mostly mirror what has been successful with CIGS, although the optimal fabrication conditions may differ. Methods can be broadly categorized as vacuum deposition vs. non-vacuum and single-step vs. sulfidation and selenidation reaction methods. Vacuum-based methods are dominant in the current CIGS industry, but in the past decade there has been increasing interest and progress in non-vacuum processes owing to their potential lower capital costs and flexibility to coat large areas.

The record-holding CZTS solar cells is made by spin coating a hydrazine-based slurry. [11] Due to its reducing character, hydrazine can stabilize sulfide and selenide anions in solution without adding impurities into the mix. [12] To prevent defect formation, copper-poor and zinc-rich solutions were used.

A particular challenge for fabrication of CZTS and related alloys is the volatility of certain elements (Zn and SnS) which can evaporate under reaction conditions. Once CZTS is formed, element volatility is less of a problem but even then CZTS will decompose into binary and ternary compounds in vacuum at temperatures above 500 °C. This volatility and difficulty of preparing a single-phase material has resulted in the success of many traditional vacuum methods. Currently the best CZTS devices have been achieved through certain chemical methods which allow CZTS formation at low temperatures avoiding volatility problems.

A continuous flow process using ethylene glycol as a solvent has been developed at Oregon State University which may be suitable for industrial scale mass production. [13]

Motivation for development

CIGS and CdTe are two of the most promising thin-film solar cells and have recently seen growing commercial success. Despite continued rapid cost reduction, concerns about material price and availability as well as toxicity have been raised. Although current material costs are a small portion of the total solar cell cost, continued rapid growth of thin-film solar cells could lead to increased material price and limited supply.

For CIGS, indium has been subject to growing demand because of the rapid expansion of indium tin oxide (ITO) used in flat screen displays and mobile devices. The demand coupled with limited supply helped prices quickly climb to over $1000/kg before the global recession. While processing and capital equipment make up the majority of the costs for producing a CIGS solar cells, the price of the raw material is the lower bound for future costs and could be a limiting factor in decades ahead if demand continues to increase with limited supply. Indium exists mostly in low concentration ore deposits and is therefore obtained mainly as a byproduct of zinc mining. Growth projections based on many assumptions suggest that indium supply could limit CIGS production to the range of 17–106 GW/yr in 2050. [14] Tellurium is even scarcer than indium, although demand has also been historically lower. Tellurium abundance in the Earth's crust is similar to that of gold, and projections of future availability range from 19 to 149 GW/yr in 2050.

CZTS (Cu2ZnSnS4) offers to alleviate the material bottlenecks present in CIGS (and CdTe). CZTS is similar to the chalcopyrite structure of CIGS but uses only earth-abundant elements. Raw materials are about five times cheaper than those for CIGS, and estimates of global material reserves (for Cu, Sn, Zn and S) suggest we could produce enough energy to power the world with only 0.1% of the available raw material resources. [15] In addition, CZTS is non-toxic, unlike CdTe and to a lesser extent CIGS (although selenium is sometimes alloyed with CZTS and CdS is sometimes used as the n-type junction partner). In addition to these economical and environmental benefits, CZTS exhibits much greater radiation hardness than other photovoltaic materials, making it an excellent candidate for use in space. [16]

Development of solar cells

CZTS was first created in 1966 [17] and was later shown to exhibit the photovoltaic effect in 1988. [18] CZTS solar cells with efficiency up to 2.3% were reported in 1997, as well as CZTSe devices. [19] The solar cell efficiency in CZTS was increased to 5.7% in 2005 by optimizing the deposition process. [20] Recently, a 3.4% bifacial device, using In substituted CZTS (CZTIS) absorber material and transparent conducting back contact was reported in 2014, [21] which can produce photocurrent on either side of illumination; later, the device efficiency based on this bifacial configuration has been boosted to 5.8% in 2016. [22] Additionally, it has been demonstrated that sodium has an enhancing effect on the structural and electrical properties of CZTS absorber layers. [23] These improvements, alongside the beginnings of CIGS production on a commercial scale in the mid-2000s catalyzed research interest in CZTS and related compounds.

Since 1988 CZTS was considered as an alternative to CIGS for commercial solar cell systems. The advantage of CZTS is the lack of the relatively rare and expensive element indium. The British Geological Survey Risk List 2011 gave indium a "relative supply risk index" of 6.5, where the maximum was 8.5. [24]

In 2010, a solar energy conversion efficiency of about 10% was achieved in a CZTS device. [25] CZTS technology is now being developed by several private companies. [26] In August 2012, IBM announced they had developed CZTS solar cell capable of converting 11.1% of solar energy to electricity. [27]

In 2013 Rajeshmon et al. reported an efficiency of 1.85% on spray pyrolysed CZTS/In2S3 solar cell. [28]

In November 2013, the Japanese thin-film solar company Solar Frontier announced that in joint research with IBM and Tokyo Ohka Kogyo (TOK), they had developed a world-record setting CZTSSe solar cell with a 12.6% energy conversion efficiency. [29]

In 2018, CZTS nanoparticles were used as a hole transport layer for perovskite solar cells as a method to increase device stability and affordability, yielding a reported conversion efficiency of 9.66%. [30]

Related Research Articles

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 8% Sn, and 18% O by weight. Oxygen-saturated compositions are so typical that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to gray. In the infrared region of the spectrum it acts as a metal-like mirror.

<span class="mw-page-title-main">Photovoltaics</span> Method to produce electricity from solar radiation

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

<span class="mw-page-title-main">Copper indium gallium selenide</span> Chemical compound

Copper indium gallium (di)selenide (CIGS) is a I-III-VI2 semiconductor material composed of copper, indium, gallium, and selenium. The material is a solid solution of copper indium selenide (often abbreviated "CIS") and copper gallium selenide. It has a chemical formula of CuIn1−xGaxSe2, where the value of x can vary from 0 (pure copper indium selenide) to 1 (pure copper gallium selenide). CIGS is a tetrahedrally bonded semiconductor, with the chalcopyrite crystal structure, and a bandgap varying continuously with x from about 1.0 eV (for copper indium selenide) to about 1.7 eV (for copper gallium selenide).

<span class="mw-page-title-main">Zinc phosphide</span> Chemical compound

Zinc phosphide (Zn3P2) is an inorganic chemical compound. It is a grey solid, although commercial samples are often dark or even black. It is used as a rodenticide. Zn3P2 is a II-V semiconductor with a direct band gap of 1.5 eV and may have applications in photovoltaic cells. A second compound exists in the zinc-phosphorus system, zinc diphosphide (ZnP2).

<span class="mw-page-title-main">Building-integrated photovoltaics</span> Photovoltaic materials used to replace conventional building materials

Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or façades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology. The advantage of integrated photovoltaics over more common non-integrated systems is that the initial cost can be offset by reducing the amount spent on building materials and labor that would normally be used to construct the part of the building that the BIPV modules replace. In addition, BIPV allows for more widespread solar adoption when the building's aesthetics matter and traditional rack-mounted solar panels would disrupt the intended look of the building.

Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions and thin film cells. Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion,, hot-carrier effects and other multiple-carrier ejection techniques.

HelioVolt Corporation was a privately held solar energy company based in Austin, Texas that suspended operations in 2014. The company manufactured photovoltaic (PV) solar modules using a thin film semiconductor process based on copper indium gallium selenide (CIGS) to produce CIGS solar cells. HelioVolt manufactured these thin film modules for commercial rooftop, utility-scale ground mount, residential, building-integrated photovoltaics (BIPV) and custom installations. The company raised over $230 million in investments, including over $80 million by SK Group.

MiaSolé is an American solar energy company selling copper indium gallium selenide (CIGS) thin-film photovoltaic products. MiaSolé's manufacturing process lays CIGS on a flexible stainless steel substrate. MiaSolé produces all layers of photovoltaic material in a continuous sputtering process.

Tin(II) sulfide is a chemical compound of tin and sulfur. The chemical formula is SnS. Its natural occurrence concerns herzenbergite (α-SnS), a rare mineral. At elevated temperatures above 905 K, SnS undergoes a second order phase transition to β-SnS (space group: Cmcm, No. 63). In recent years, it has become evident that a new polymorph of SnS exists based upon the cubic crystal system, known as π-SnS (space group: P213, No. 198).

Global Solar Energy is a US-based manufacturer of CIGS solar cells, a thin-film based photovoltaic technology, with manufacturing operations in Tucson, Arizona, United States, and Berlin, Germany. In 2013, it was bought by Chinese renewable energy company Hanergy.

<span class="mw-page-title-main">Cadmium telluride photovoltaics</span> Type of solar power cell

Cadmium telluride (CdTe) photovoltaics is a photovoltaic (PV) technology based on the use of cadmium telluride in a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.

<span class="mw-page-title-main">Thin-film solar cell</span> Type of second-generation solar cell

Thin-film solar cells are made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.

<span class="mw-page-title-main">Copper indium gallium selenide solar cell</span>

A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solid solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.

<span class="mw-page-title-main">Transparent conducting film</span> Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

<span class="mw-page-title-main">Crystalline silicon</span> Semiconducting material used in solar cell technology

Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon, or monocrystalline silicon. Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight.

Larry C. Olsen was a pioneer in the commercialization of betavoltaic technology. While working for the McDonnell Douglas Corporation in the 1970s, Olsen lead the development of the first commercially available betavoltaic nuclear battery. Several hundred of these batteries were fabricated and a large number were used to power implanted heart pacemakers. Olsen has published more than 80 articles in the fields of betavoltaics, photovoltaics, thermoelectric materials, and solid state physics. He has also earned several awards for his research, including the R&D 100 Award, presented each year by R&D Magazine to identify the 100 most significant, newly introduced research and development advances in multiple disciplines.

<span class="mw-page-title-main">Kesterite</span>

Kësterite is a sulfide mineral with a chemical formula of Cu2(Zn,Fe)SnS4. In its lattice structure, zinc and iron atoms share the same lattice sites. Kesterite is the Zn-rich variety whereas the Zn-poor form is called ferrokesterite or stannite. Owing to their similarity, kesterite is sometimes called isostannite. The synthetic form of kesterite is abbreviated as CZTS. The name kesterite is sometimes extended to include this synthetic material and also CZTSe, which contains selenium instead of sulfur.

<span class="mw-page-title-main">Solar Frontier</span>

Solar Frontier Kabushiki Kaisha is a Japanese photovoltaic company that develops and manufactures thin film solar cells using CIGS technology. It is a fully owned subsidiary of Showa Shell Sekiyu and located in Minato, Tokyo, Japan. The company was founded in 2006 as Showa Shell Solar, and renamed Solar Frontier in April 2010.

Light soaking refers to the change in power output of solar cells which can be measured after illumination. This can either be an increase or decrease, depending on the type of solar cell. The cause of this effect and the consequences on efficiency varies per type of solar cell. Light soaking can generally cause either metastable electrical or structural effects. Electrical effects can vary the efficiency depending on illumination, electrical bias and temperature, where structural effects actually changes the structure of the material and performance is often permanently altered.

References

  1. 1 2 Guen, L.; Glaunsinger, W.S. (1980). "Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport". Journal of Solid State Chemistry. 35 (1): 10–21. Bibcode:1980JSSCh..35...10G. doi:10.1016/0022-4596(80)90457-0.
  2. Matsushita, H.; Ichikawa, T.; Katsui, A. (2005). "Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds". Journal of Materials Science. 40 (8): 2003–2005. Bibcode:2005JMatS..40.2003M. doi:10.1007/s10853-005-1223-5. S2CID   100713002.
  3. Ichimura, Masaya; Nakashima, Yuki (2009). "Analysis of Atomic and Electronic Structures of Cu2ZnSnS4 Based on First-Principle Calculation". Japanese Journal of Applied Physics. 48 (9): 090202. Bibcode:2009JaJAP..48i0202I. doi:10.1143/JJAP.48.090202. S2CID   97102555.
  4. Katagiri, Hironori; Saitoh, Kotoe; Washio, Tsukasa; Shinohara, Hiroyuki; Kurumadani, Tomomi; Miyajima, Shinsuke (2001). "Development of thin film solar cell based on Cu2ZnSnS4 thin films". Solar Energy Materials and Solar Cells. 65 (1–4): 141–148. doi:10.1016/S0927-0248(00)00088-X.
  5. Grini, Sigbjørn (2019). Band gap grading and impurities in Cu2ZnSnS4 solar cells (PhD thesis). University of Oslo.
  6. Chen, S.; Gong, X. G.; Walsh, A.; Wei, S.-H. (2009). "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights" (PDF). Applied Physics Letters. 94 (4): 041903. Bibcode:2009ApPhL..94d1903C. doi:10.1063/1.3074499.
  7. K. Rudisch, Y. Ren, C. Platzer-Björkman, J. Scragg, "Order-disorder transition in B-type Cu2ZnSnS4 and limitations of ordering through thermal treatments", Applied Physics Letters 108:23 (2016) https://doi.org/10.1063/1.4953349
  8. Chen, Shiyou; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai (2013). "Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers". Advanced Materials. 25 (11): 1522–1539. Bibcode:2013AdM....25.1522C. doi:10.1002/adma.201203146. ISSN   1521-4095. PMID   23401176. S2CID   197381800.
  9. Cancino Gordillo, Francisco (2 February 2023). "Removal of secondary phases and its effect on the transport behavior of Cu2ZnSn1-xGexS4 kesterite nanoparticles". Applied Surface Science. 617: 156617. doi:10.1016/j.apsusc.2023.156617. S2CID   256560215.
  10. Yaghoubi, Alireza; Hao, Xiaojing (25 February 2024). "Polymorphs of Copper Zinc Tin Sulfide: Optoelectronic Properties and Detection Using Raman". Solar RRL: 2400010. doi: 10.1002/solr.202400010 .
  11. Wang, Wei; Winkler, Mark T.; Gunawan, Oki; Gokmen, Tayfun; Todorov, Teodor K.; Zhu, Yu; Mitzi, David B. (2014). "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency". Advanced Energy Materials. 4 (7): 1301465. Bibcode:2014AdEnM...401465W. doi:10.1002/aenm.201301465. ISSN   1614-6840. S2CID   94015059.
  12. Todorov, Teodor K.; Reuter, Kathleen B.; Mitzi, David B. (2010). "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber". Advanced Materials. 22 (20): E156–E159. Bibcode:2010AdM....22E.156T. doi:10.1002/adma.200904155. ISSN   1521-4095. PMID   20641095. S2CID   205235945.
  13. "Antifreeze, cheap materials may lead to low-cost solar energy". Oregon State University. July 3, 2013.
  14. Fthenakis, V. (2009). "Sustainability of photovoltaics: The case for thin-film solar cells". Renewable and Sustainable Energy Reviews. 13 (9): 2746–2750. doi:10.1016/j.rser.2009.05.001.
  15. Wadia, C.; Alivisatos, A. P.; Kammen, D. M. (2009). "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment". Environmental Science & Technology. 43 (6): 2072–7. Bibcode:2009EnST...43.2072W. doi:10.1021/es8019534. PMID   19368216.
  16. Suvanam, Sethu Saveda; Larsen, Jes; Ross, Nils; Kosyak, Volodymyr; Hallén, Anders; Björkman, Charlotte Platzer (2018-10-01). "Extreme radiation hard thin film CZTSSe solar cell". Solar Energy Materials and Solar Cells. 185: 16–20. doi:10.1016/j.solmat.2018.05.012. ISSN   0927-0248. S2CID   103765304.
  17. Nitsche, R.; Sargent, D. F.; Wild, P. (1967). "Crystal Growth of Quaternary I(2)II-IV-VI(4) Chalcogenides by Iodine Vapor Transport". Journal of Crystal Growth. 1 (1): 52–53. Bibcode:1967JCrGr...1...52N. doi:10.1016/0022-0248(67)90009-7.
  18. Ito, K.; Nakazawa, T. (1988). "Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films". Japanese Journal of Applied Physics. 27 (11): 2094–2097. Bibcode:1988JaJAP..27.2094I. doi:10.1143/JJAP.27.2094. S2CID   121027480.
  19. Friedlmeier, T. M.; Wieser, N.; Walter, T.; Dittrich, H.; Schock, H.-W. (1997). "Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films". Proceedings of the 14th European Photovoltaic Solar Energy Conference.
  20. Katagiri, Hironori; Jimbo, Kazuo; Maw, Win Shwe; Oishi, Koichiro; Yamazaki, Makoto; Araki, Hideaki; Takeuchi, Akiko (2009). "Development of CZTS-based thin film solar cells". Thin Solid Films. 517 (7): 2455–2460. Bibcode:2009TSF...517.2455K. doi:10.1016/j.tsf.2008.11.002.
  21. Ge, J.; Chu, J.; Jiang, J.; Yan, Y.; Yang, P. (2014). "Characteristics of In-substituted CZTS thin film and bifacial solar cell". ACS Applied Materials & Interfaces. 6 (23): 21118–21130. doi:10.1021/am505980n. PMID   25340540.
  22. Ge, Jie; Yu, Yue; Ke, Weijun; Li, Jian; Tan, Xingxuan; Wang, Zhiwei; Chu, Junhao; Yan, Yanfa (2016). "Improved performance of electroplated CZTS thin-film solar cells with bifacial configuration". ChemSusChem. 9 (16): 2149–58. Bibcode:2016ChSCh...9.2149G. doi:10.1002/cssc.201600440. PMID   27400033.
  23. Prabhakar, Tejas; Nagaraju, J. (2011). "Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films". Solar Energy Materials and Solar Cells. 95 (3): 1001–1004. doi:10.1016/j.solmat.2010.12.012.
  24. Risk list 2011. A new supply risk index for chemical elements or element groups which are of economic value. Minerals UK
  25. Todorov, T. K.; Reuter, K. B.; Mitzi, D. B. (2010). "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber". Advanced Materials. 22 (20): E156–9. Bibcode:2010AdM....22E.156T. doi:10.1002/adma.200904155. PMID   20641095. S2CID   205235945.
  26. "Solar Frontier and IBM Sign Agreement to Develop CZTS Solar Cell Technology". Archived from the original on 2010-11-06. Retrieved 2012-08-23.
  27. Todorov, Teodor; Mitzi, David. "Shedding light on new frontiers of solar cell semiconductors". IBM. Retrieved 22 August 2012.
  28. Rajeshmon, V.G.; Poornima, N.; Sudha Kartha, C.; Vijayakumar, K.P. (2013). "Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell". Journal of Alloys and Compounds. 553: 239–244. doi:10.1016/j.jallcom.2012.11.106.
  29. Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. (2013). "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency". Advanced Energy Materials. 4 (7): 1301465. Bibcode:2014AdEnM...401465W. doi:10.1002/aenm.201301465. S2CID   94015059.
  30. Patel, Siddhant B.; Patel, Amar H.; Gohel, Jignasa V. (2018-12-05). "A novel and cost effective CZTS hole transport material applied in perovskite solar cells". CrystEngComm. 20 (47): 7677–7687. doi:10.1039/C8CE01337C. ISSN   1466-8033.

Further reading