Explosive eruption

Last updated
Mount St. Helens explosive eruption on May 18, 1980 MSH80 st helens eruption plume 07-22-80.jpg
Mount St. Helens explosive eruption on May 18, 1980
Eruption of Mount Pinatubo in the Philippines on June 12, 1991 (PST). Its ash would spread as far west as mainland South East Asia. Pinatubo 1991-06-12 (USGS).jpg
Eruption of Mount Pinatubo in the Philippines on June 12, 1991 (PST). Its ash would spread as far west as mainland South East Asia.

In volcanology, an explosive eruption is a volcanic eruption of the most violent type. A notable example is the 1980 eruption of Mount St. Helens. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can expel as much as 1,000 kg (2,200 lb) per second [1] of rocks, dust, gas and pyroclastic material, averaged over the duration of eruption, that travels at several hundred meters per second as high as 20 km (12 mi) into the atmosphere. This cloud may subsequently collapse, creating a fast-moving pyroclastic flow of hot volcanic matter.

Contents

Physics

An early stage of the July 12, 2009, eruption of Sarychev volcano, seen from space Sarychev Volcano edit.jpg
An early stage of the July 12, 2009, eruption of Sarychev volcano, seen from space

Viscous magmas cool beneath the surface before they erupt. As they do this, bubbles exsolve from the magma. Because the magma is viscous, the bubbles remain trapped in the magma. [2] As the magma nears the surface, the bubbles and thus the magma increase in volume. The pressure of the magma builds until the blockage is blasted out in an explosive eruption through the weakest point in the cone, usually the crater. (However, in the case of the eruption of Mount St. Helens, the pressure was released on the side of the volcano, rather than the crater. [3] ). The release of pressure causes more gas to exsolve, doing so explosively. The gas may expand at hundreds of metres per second, expanding upward and outward. As the eruption progresses, a chain reaction causes the magma to be ejected at higher and higher speeds. [2]

Volcanic ash formation

The violently expanding gas disperses and breaks up magma, forming an emulsion of gas and magma called volcanic ash. The cooling of the gas in the ash as it expands chills the magma fragments, often forming tiny glass shards recognisable as portions of the walls of former liquid bubbles. In more fluid magmas the bubble walls may have time to reform into spherical liquid droplets. The final state of the emulsions depends strongly on the ratio of liquid to gas. Gas-poor magmas end up cooling into rocks with small cavities, becoming vesicular lava. Gas-rich magmas cool to form rocks with cavities that nearly touch, with an average density less than that of water, forming pumice. Meanwhile, other material can be accelerated with the gas, becoming volcanic bombs. These can travel with so much energy that large ones can create craters when they hit the ground. [2]

Pyroclastic flows

When an emulsion of volcanic gas and magma falls back to the ground, it can create a density current called a pyroclastic flow. The emulsion is somewhat fluidised by the gas, allowing it to spread. These can often climb over obstacles, and devastate human life. [2] Earthly pyroclastic flows can travel at up to 80 km (50 mi) per hour and reach temperatures of 200 to 700 °C (392 to 1,292 °F). The high temperatures can burn flammable materials in the flow's path, including wood, vegetation, and buildings. Alternately, when an eruption has contact with snow, crater lakes, or wet soil in large amounts, water mixing into the flow can create lahars, [4] which pose significant known risks worldwide.

Types

  1. Vulcanian eruption
  2. Peléan eruption
  3. Plinian eruption

Other mechanisms

An explosive eruption is usually triggered by exsolution of volatiles but there are other ways to create an explosive eruption.

Phreatic eruption

A phreatic eruption can occur when hot water under pressure is depressurised. Depressurisation reduces the boiling point of the water, so when depressurised the water suddenly boils. [5] Or it may happen when groundwater is suddenly heated, flashing to steam suddenly. [6] When the water turns into steam, it expands at supersonic speeds, up to 1,700 times its original volume. This can be enough to shatter solid rock, and hurl rock fragments hundreds of metres. [7]

A phreatomagmatic eruption contains magmatic material, in contrast to a phreatic eruption which does not. [8]

Clathrate hydrates

One mechanism for explosive cryovolcanism is cryomagma making contact with clathrate hydrates. Clathrate hydrates, if exposed to warm temperatures, readily decompose. A 1982 article pointed out the possibility that the production of pressurised gas upon destabilisation of clathrate hydrates making contact with warm rising magma could produce an explosion that breaks through the surface, resulting in explosive cryovolcanism. [9]

Water vapor in a vacuum

If a fracture reaches the surface of an icy body and the column of rising water is exposed to the near-vacuum of the surface of most icy bodies, it will immediately start to boil, because its vapor pressure is much more than the ambient pressure. Not only that, but any volatiles in the water will exsolve. The combination of these processes will release droplets and vapor, which can rise up the fracture, creating a plume. This is thought to be partially responsible for Enceladus's ice plumes. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in a planets crust where material escapes

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Volcanism</span> Phenomenon where interior material reaches the surface of an astronomical body

Volcanism, vulcanism, volcanicity, or volcanic activity is the phenomenon where solids, liquids, gases, and their mixtures erupt to the surface of a solid-surface astronomical body such as a planet or a moon. It is caused by the presence of a heat source inside the body. This internal heat partially melts solid material in the body or turns material into gas. The mobilized material rises through the body's interior and may break through the solid surface.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).

<span class="mw-page-title-main">Volcanic cone</span> Landform of ejecta from a volcanic vent piled up in a conical shape

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

<span class="mw-page-title-main">Pyroclastic rock</span> Clastic rocks composed solely or primarily of volcanic materials

Pyroclastic rocks are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroclasts. Pyroclastic rocks are a type of volcaniclastic deposit, which are deposits made predominantly of volcanic particles. 'Phreatic' pyroclastic deposits are a variety of pyroclastic rock that forms from volcanic steam explosions and they are entirely made of accidental clasts. 'Phreatomagmatic' pyroclastic deposits are formed from explosive interaction of magma with groundwater. The word pyroclastic is derived from the Greek πῦρ, meaning fire; and κλαστός, meaning broken.

<span class="mw-page-title-main">Scoria</span> Dark vesicular volcanic rock

Scoria is a pyroclastic, highly vesicular, dark-colored volcanic rock formed by ejection from a volcano as a molten blob and cooled in the air to form discrete grains called clasts. It is typically dark in color, and basaltic or andesitic in composition. Scoria has relatively low density, as it is riddled with macroscopic ellipsoidal vesicles, but in contrast to pumice, scoria always has a specific gravity greater than 1 and sinks in water.

<span class="mw-page-title-main">Phreatic eruption</span> Volcanic eruption caused by an explosion of steam

A phreatic eruption, also called a phreatic explosion, ultravulcanian eruption or steam-blast eruption, occurs when magma heats ground water or surface water. The extreme temperature of the magma causes near-instantaneous evaporation of water to steam, resulting in an explosion of steam, water, ash, rock, and volcanic bombs. At Mount St. Helens in Washington state, hundreds of steam explosions preceded the 1980 Plinian eruption of the volcano. A less intense geothermal event may result in a mud volcano.

<span class="mw-page-title-main">Volcanic crater</span> Roughly circular depression in the ground caused by volcanic activity

A volcanic crater is an approximately circular depression in the ground caused by volcanic activity. It is typically a bowl-shaped feature containing one or more vents. During volcanic eruptions, molten magma and volcanic gases rise from an underground magma chamber, through a conduit, until they reach the crater's vent, from where the gases escape into the atmosphere and the magma is erupted as lava. A volcanic crater can be of large dimensions, and sometimes of great depth. During certain types of explosive eruptions, a volcano's magma chamber may empty enough for an area above it to subside, forming a type of larger depression known as a caldera.

<span class="mw-page-title-main">Cerro Azul (Chile volcano)</span> Mountain in Curicó Province, Chile

Cerro Azul, sometimes referred to as Quizapu, is an active stratovolcano in the Maule Region of central Chile, immediately south of Descabezado Grande. Part of the South Volcanic Zone of the Andes, its summit is 3,788 meters (12,428 ft) above sea level, and is capped by a summit crater that is 500 meters (1,600 ft) wide and opens to the north. Beneath the summit, the volcano features numerous scoria cones and flank vents.

<span class="mw-page-title-main">Vulcanian eruption</span> Volcanic eruption with dense ash clouds

A Vulcanian eruption is a type of volcanic eruption characterized by a dense cloud of ash-laden gas exploding from the crater and rising high above the peak. They usually commence with phreatomagmatic eruptions which can be extremely noisy due to the rising magma heating water in the ground. This is usually followed by the explosive clearing of the vent and the eruption column is dirty grey to black as old weathered rocks are blasted out of the vent. As the vent clears, further ash clouds become grey-white and creamy in colour, with convolutions of the ash similar to those of Plinian eruptions.

<span class="mw-page-title-main">Effusive eruption</span> Type of volcanic eruption characterized by steady lava flow

An effusive eruption is a type of volcanic eruption in which lava steadily flows out of a volcano onto the ground.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which material is expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

Volatiles are the group of chemical elements and chemical compounds that can be readily vaporized. In contrast with volatiles, elements and compounds that are not readily vaporized are known as refractory substances.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">Cinder cone</span> Steep hill of pyroclastic fragments around a volcanic vent

A cinder cone is a steep conical hill of loose pyroclastic fragments, such as volcanic clinkers, volcanic ash, or scoria that has been built around a volcanic vent. The pyroclastic fragments are formed by explosive eruptions or lava fountains from a single, typically cylindrical, vent. As the gas-charged lava is blown violently into the air, it breaks into small fragments that solidify and fall as either cinders, clinkers, or scoria around the vent to form a cone that often is symmetrical; with slopes between 30 and 40°; and a nearly circular ground plan. Most cinder cones have a bowl-shaped crater at the summit.

<span class="mw-page-title-main">Submarine eruption</span> Underwater volcanic eruption

Submarine eruptions are volcano eruptions which take place beneath the surface of water. These occur at constructive margins, subduction zones and within tectonic plates due to hotspots. This eruption style is far more prevalent than subaerial activity. For example, it is believed that 70 to 80% of the Earth's magma output takes place at mid-ocean ridges.

<span class="mw-page-title-main">Volcanism on Mars</span> Overview of volcanism in the geological history of Mars

Volcanic activity, or volcanism, has played a significant role in the geologic evolution of Mars. Scientists have known since the Mariner 9 mission in 1972 that volcanic features cover large portions of the Martian surface. These features include extensive lava flows, vast lava plains, and the largest known volcanoes in the Solar System. Martian volcanic features range in age from Noachian to late Amazonian, indicating that the planet has been volcanically active throughout its history, and some speculate it probably still is so today. Both Mars and Earth are large, differentiated planets built from similar chondritic materials. Many of the same magmatic processes that occur on Earth also occurred on Mars, and both planets are similar enough compositionally that the same names can be applied to their igneous rocks.

<span class="mw-page-title-main">Gas slug</span> Conglomerate of high pressure gas bubbles

A gas slug is a conglomerate of high pressure gas bubbles that forms within certain volcanoes, the agitation of which is a driving factor in Strombolian eruptions. They start out as small bubbles of gas inside of volcanic magma. These accumulate into one large bubble, which starts to rise through the lava plume. Gas slugs also consist of many chemical properties that assist scientists in monitoring volcanic eruptions.

<span class="mw-page-title-main">Crater</span> Depression caused by an impact or geologic activity

A crater is a landform consisting of a hole or depression on a planetary surface, usually caused either by an object hitting the surface, or by geological activity on the planet. A crater has classically been described as: "a bowl-shaped pit that is formed by a volcano, an explosion, or a meteorite impact". On Earth, craters are "generally the result of volcanic eruptions", while "meteorite impact craters are common on the Moon, but are rare on Earth".

References

  1. Mason, Ben G.; Pyle, David M.; Oppenheimer, Clive (2004-12-01). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology. 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9. ISSN   1432-0819. S2CID   129680497.
  2. 1 2 3 4 "Volcanoes" (PDF).
  3. Skinner, Brian J. (2004). Dynamic Earth: An Introduction to Physical Geology. John Wiley & Sons. Inc. Hoboken, NJ. ISBN   978-0-471-15228-6.
  4. "Pyroclastic flows move fast and destroy everything in their path".
  5. "Dangerous water vapor: phreatic eruptions".
  6. "VHP Photo Glossary: Phreatic eruption". Volcano Hazards Program. U.S. Geological Survey. Retrieved 13 November 2010.
  7. Cronin, Shane (December 9, 2019). "Steam-driven volcanic eruptions difficult to predict, still poorly understood".
  8. "Phreatomagmatic Eruption as Explained to Kids". January 14, 2020.
  9. 1 2 Fagent1, Lopes2, Quick3, Gregg4, Sarah A.1, Rosaly M.C.2, Lynnae C.3, Tracy K.P.4. "Chapter 5 Cryovolcanism" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)