Kerala school of astronomy and mathematics

Last updated

Kerala school of astronomy and mathematics
Kerala school chain of teachers.jpg
Chain of teachers of the Kerala school
Location
Central and Northern Kerala, India
Information
Type Astronomy, Mathematics, Science
Founder Madhava of Sangamagrama

The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta Somayaji, Jyeshtadeva, Achyuta Pisharati, Melpathur Narayana Bhattathiri and Achyuta Panikkar. The school flourished between the 14th and 16th centuries and its original discoveries seem to have ended with Narayana Bhattathiri (1559–1632). In attempting to solve astronomical problems, the Kerala school independently discovered a number of important mathematical concepts. Their most important results—series expansion for trigonometric functions—were described in Sanskrit verse in a book by Neelakanta called Tantrasangraha , and again in a commentary on this work, called Tantrasangraha-vakhya, of unknown authorship. The theorems were stated without proof, but proofs for the series for sine, cosine, and inverse tangent were provided a century later in the work Yuktibhasa (c.1530), written in Malayalam, by Jyesthadeva, and also in a commentary on Tantrasangraha. [1]

Contents

Their work, completed two centuries before the invention of calculus in Europe, provided what is now considered the first example of a power series (apart from geometric series). [2] [3] [4]

Background

Islamic scholars nearly developed a general formula for finding integrals of polynomials by 1000 AD —and evidently could find such a formula for any polynomial in which they were interested. But, it appears, they were not interested in any polynomial of degree higher than four, at least in any of the material that has come down to us. Indian scholars, on the other hand, were by the year 1600 able to use formula similar to Ibn al-Haytham's sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested. By the same time, they also knew how to calculate the differentials of these functions. So some of the basic ideas of calculus were known in Egypt and India many centuries before Isaac Newton. It does not appear, however, that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus. They were apparently only interested in specific cases in which these ideas were needed. [5] [6]

Contributions

Pages from the Yuktibhasa c.1530 Pages from Yuktibhasa.jpg
Pages from the Yuktibhasa c.1530

Infinite series and calculus

The Kerala school has made a number of contributions to the fields of infinite series and calculus. These include the following infinite geometric series:

[7]

The Kerala school made intuitive use of mathematical induction, though the inductive hypothesis was not yet formulated or employed in proofs. [1] They used this to discover a semi-rigorous proof of the result:

for large n.

They applied ideas from (what was to become) differential and integral calculus to obtain (Taylor–Maclaurin) infinite series for , , and . [8] The Tantrasangraha-vakhya gives the series in verse, which when translated to mathematical notation, can be written as: [1]

where, for the series reduce to the standard power series for these trigonometric functions, for example:

and

(The Kerala school did not use the "factorial" symbolism.)

The Kerala school made use of the rectification (computation of length) of the arc of a circle to give a proof of these results. (The later method of Leibniz, using quadrature (i.e. computation of area under the arc of the circle), was not yet developed.) [1] They also made use of the series expansion of to obtain an infinite series expression (later known as Gregory series) for : [1]

Their rational approximation of the error for the finite sum of their series are of particular interest. For example, the error, , (for n odd, and i = 1, 2, 3) for the series:

where

They manipulated the terms, using the partial fraction expansion of : to obtain a more rapidly converging series for : [1]

They used the improved series to derive a rational expression, [1] for correct up to nine decimal places, i.e. . They made use of an intuitive notion of a limit to compute these results. [1] The Kerala school mathematicians also gave a semi-rigorous method of differentiation of some trigonometric functions, [9] though the notion of a function, or of exponential or logarithmic functions, was not yet formulated.

Recognition

In 1825 John Warren published a memoir on the division of time in southern India, [10] called the Kala Sankalita, which briefly mentions the discovery of infinite series by Kerala astronomers.

The works of the Kerala school were first written up for the Western world by Englishman C. M. Whish in 1835. According to Whish, the Kerala mathematicians had "laid the foundation for a complete system of fluxions" and these works abounded "with fluxional forms and series to be found in no work of foreign countries". [11] However, Whish's results were almost completely neglected, until over a century later, when the discoveries of the Kerala school were investigated again by C. T. Rajagopal and his associates. Their work includes commentaries on the proofs of the arctan series in Yuktibhasa given in two papers, [12] [13] a commentary on the Yuktibhasa's proof of the sine and cosine series [14] and two papers that provide the Sanskrit verses of the Tantrasangrahavakhya for the series for arctan, sin, and cosine (with English translation and commentary). [15] [16]

In 1952 Otto Neugebauer wrote on Tamil astronomy. [17]

In 1972 K. V. Sarma published his A History of the Kerala School of Hindu Astronomy which described features of the School such as the continuity of knowledge transmission from the 13th to the 17th century: Govinda Bhattathiri to Parameshvara to Damodara to Nilakantha Somayaji to Jyesthadeva to Acyuta Pisarati. Transmission from teacher to pupil conserved knowledge in "a practical, demonstrative discipline like astronomy at a time when there was not a proliferation of printed books and public schools."

In 1994 it was argued that the heliocentric model had been adopted about 1500 A.D. in Kerala. [18]

Possible transmission of Kerala school results to Europe

A. K. Bag suggested in 1979 that knowledge of these results might have been transmitted to Europe through the trade route from Kerala by traders and Jesuit missionaries. [19] Kerala was in continuous contact with China and Arabia, and Europe. The suggestion of some communication routes and a chronology by some scholars [20] [21] could make such a transmission a possibility; however, there is no direct evidence by way of relevant manuscripts that such a transmission took place. [21] According to David Bressoud, "there is no evidence that the Indian work of series was known beyond India, or even outside of Kerala, until the nineteenth century". [8] [22] V. J. Katz notes some of the ideas of the Kerala school have similarities to the work of 11th-century Iraqi scholar Ibn al-Haytham, [9] suggesting a possible transmission of ideas from Islamic mathematics to Kerala. [23]

Both Indian and Arab scholars made discoveries before the 17th century that are now considered a part of calculus. [9] According to Katz, they were yet to "combine many differing ideas under the two unifying themes of the derivative and the integral, show the connection between the two, and turn calculus into the great problem-solving tool we have today", like Newton and Leibniz. [9] The intellectual careers of both Newton and Leibniz are well-documented and there is no indication of their work not being their own; [9] however, it is not known with certainty whether the immediate predecessors of Newton and Leibniz, "including, in particular, Fermat and Roberval, learned of some of the ideas of the Islamic and Indian mathematicians through sources of which we are not now aware". [9] This is an active area of current research, especially in the manuscript collections of Spain and Maghreb, research that is now being pursued, among other places, at the Centre national de la recherche scientifique in Paris. [9]

See also

Notes

  1. 1 2 3 4 5 6 7 8 Roy, Ranjan. 1990. "Discovery of the Series Formula for by Leibniz, Gregory, and Nilakantha." Mathematics Magazine (Mathematical Association of America) 63(5):291–306.
  2. ( Stillwell 2004 , p. 173)
  3. ( Bressoud 2002 , p. 12) Quote: "There is no evidence that the Indian work on series was known beyond India, or even outside Kerala, until the nineteenth century. Gold and Pingree assert [4] that by the time these series were rediscovered in Europe, they had, for all practical purposes, been lost to India. The expansions of the sine, cosine, and arc tangent had been passed down through several generations of disciples, but they remained sterile observations for which no one could find much use."
  4. Plofker 2001 , p. 293 Quote: "It is not unusual to encounter in discussions of Indian mathematics such assertions as that "the concept of differentiation was understood [in India] from the time of Manjula (... in the 10th century)" [Joseph 1991, 300], or that "we may consider Madhava to have been the founder of mathematical analysis" (Joseph 1991, 293), or that Bhaskara II may claim to be "the precursor of Newton and Leibniz in the discovery of the principle of the differential calculus" (Bag 1979, 294). ... The points of resemblance, particularly between early European calculus and the Keralese work on power series, have even inspired suggestions of a possible transmission of mathematical ideas from the Malabar coast in or after the 15th century to the Latin scholarly world (e.g., in (Bag 1979, 285)). ... It should be borne in mind, however, that such an emphasis on the similarity of Sanskrit (or Malayalam) and Latin mathematics risks diminishing our ability fully to see and comprehend the former. To speak of the Indian "discovery of the principle of the differential calculus" somewhat obscures the fact that Indian techniques for expressing changes in the Sine by means of the Cosine or vice versa, as in the examples we have seen, remained within that specific trigonometric context. The differential "principle" was not generalized to arbitrary functions—in fact, the explicit notion of an arbitrary function, not to mention that of its derivative or an algorithm for taking the derivative, is irrelevant here"
  5. Pingree 1992 , p. 562 Quote: "One example I can give you relates to the Indian Mādhava's demonstration, in about 1400 A.D., of the infinite power series of trigonometrical functions using geometrical and algebraic arguments. When this was first described in English by Charles Whish, in the 1830s, it was heralded as the Indians' discovery of the calculus. This claim and Mādhava's achievements were ignored by Western historians, presumably at first because they could not admit that an Indian discovered the calculus, but later because no one read anymore the Transactions of the Royal Asiatic Society, in which Whish's article was published. The matter resurfaced in the 1950s, and now we have the Sanskrit texts properly edited, and we understand the clever way that Mādhava derived the series without the calculus; but many historians still find it impossible to conceive of the problem and its solution in terms of anything other than the calculus and proclaim that the calculus is what Mādhava found. In this case the elegance and brilliance of Mādhava's mathematics are being distorted as they are buried under the current mathematical solution to a problem to which he discovered an alternate and powerful solution."
  6. Katz 1995 , pp. 173–174 Quote: "How close did Islamic and Indian scholars come to inventing the calculus? Islamic scholars nearly developed a general formula for finding integrals of polynomials by A.D. 1000—and evidently could find such a formula for any polynomial in which they were interested. But, it appears, they were not interested in any polynomial of degree higher than four, at least in any of the material that has come down to us. Indian scholars, on the other hand, were by 1600 able to use ibn al-Haytham's sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested. By the same time, they also knew how to calculate the differentials of these functions. So some of the basic ideas of calculus were known in Egypt and India many centuries before Newton. It does not appear, however, that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus. They were apparently only interested in specific cases in which these ideas were needed.
        There is no danger, therefore, that we will have to rewrite the history texts to remove the statement that Newton and Leibniz invented the calculus. They were certainly the ones who were able to combine many differing ideas under the two unifying themes of the derivative and the integral, show the connection between them, and turn the calculus into the great problem-solving tool we have today."
  7. Singh, A. N. (1936). "On the Use of Series in Hindu Mathematics". Osiris. 1: 606–628. doi:10.1086/368443. S2CID   144760421.
  8. 1 2 Bressoud, David. 2002. "Was Calculus Invented in India?" The College Mathematics Journal (Mathematical Association of America). 33(1):2–13.
  9. 1 2 3 4 5 6 7 Katz, V. J. 1995. "Ideas of Calculus in Islam and India." (pdf) Mathematics Magazine (Mathematical Association of America), 68(3):163-174.
  10. John Warren (1825) A Collection of Memoirs on Various Modes According to which Nations of the Southern Part of India Divide Time from Google Books
  11. Whish, Charles M. (1835). "XXXIII. On the Hindú Quadrature of the Circle, and the infinite Series of the proportion of the circumference to the diameter exhibited in the four S'ástras, the Tantra Sangraham, the Yucti Bháshá, Carana Padhati, and Sadratnamáka". Transactions of the Royal Asiatic Society. 3: 509–523.
  12. Rajagopal, C.; Rangachari, M. S. (1949). "A Neglected Chapter of Hindu Mathematics". Scripta Mathematica. 15: 201–209.
  13. Rajagopal, C.; Rangachari, M. S. (1951). "On the Hindu proof of Gregory's series". Scripta Mathematica. 17: 65–74.
  14. Rajagopal, C.; Venkataraman, A. (1949). "The sine and cosine power series in Hindu mathematics". Journal of the Royal Asiatic Society of Bengal (Science). 15: 1–13.
  15. Rajagopal, C.; Rangachari, M. S. (1977). "On an untapped source of medieval Keralese mathematics". Archive for History of Exact Sciences. 18 (2): 89–102. doi:10.1007/BF00348142. S2CID   51861422.
  16. Rajagopal, C.; Rangachari, M. S. (1986). "On Medieval Kerala Mathematics". Archive for History of Exact Sciences. 35 (2): 91–99. doi:10.1007/BF00357622. S2CID   121678430.
  17. Otto Neugebauer (1952) "Tamil Astronomy", Osiris 10: 252–76
  18. K. Ramasubramanian, M. D. Srinivas & M. S. Sriram (1994) Modification of the earlier Indian planetary theory by the Kerala astronomers (c. 1500 A.D.) and the implied heliocentric picture of planetary motion, Current Science 66 (10): 784–90
  19. A. K. Bag (1979) Mathematics in ancient and medieval India. Varanasi/Delhi: Chaukhambha Orientalia. page 285.
  20. Raju, C. K. (2001). "Computers, Mathematics Education, and the Alternative Epistemology of the Calculus in the Yuktibhasa". Philosophy East and West. 51 (3): 325–362. doi:10.1353/pew.2001.0045. S2CID   170341845.
  21. 1 2 Almeida, D. F.; John, J. K.; Zadorozhnyy, A. (2001). "Keralese Mathematics: Its Possible Transmission to Europe and the Consequential Educational Implications". Journal of Natural Geometry. 20: 77–104.
  22. Gold, D.; Pingree, D. (1991). "A hitherto unknown Sanskrit work concerning Madhava's derivation of the power series for sine and cosine". Historia Scientiarum. 42: 49–65.
  23. Katz 1995 , p. 174.

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Taylor series</span> Mathematical approximation of a function

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.

Mādhava of Sangamagrāma (Mādhavan) was an Indian mathematician and astronomer who is considered as the founder of the Kerala school of astronomy and mathematics in the Late Middle Ages. Madhava made pioneering contributions to the study of infinite series, calculus, trigonometry, geometry, and algebra. He was the first to use infinite series approximations for a range of trigonometric functions, which has been called the "decisive step onward from the finite procedures of ancient mathematics to treat their limit-passage to infinity".

Jyeṣṭhadeva was an astronomer-mathematician of the Kerala school of astronomy and mathematics founded by Madhava of Sangamagrama. He is best known as the author of Yuktibhāṣā, a commentary in Malayalam of Tantrasamgraha by Nilakantha Somayaji (1444–1544). In Yuktibhāṣā, Jyeṣṭhadeva had given complete proofs and rationale of the statements in Tantrasamgraha. This was unusual for traditional Indian mathematicians of the time. The Yuktibhāṣā is now believed to contain the essential elements of calculus like Taylor and infinity series. Jyeṣṭhadeva also authored Drk-karana, a treatise on astronomical observations.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

<i>Yuktibhāṣā</i> Treatise on mathematics and astronomy

Yuktibhāṣā, also known as Gaṇita-yukti-bhāṣā and Gaṇitanyāyasaṅgraha, is a major treatise on mathematics and astronomy, written by the Indian astronomer Jyesthadeva of the Kerala school of mathematics around 1530. The treatise, written in Malayalam, is a consolidation of the discoveries by Madhava of Sangamagrama, Nilakantha Somayaji, Parameshvara, Jyeshtadeva, Achyuta Pisharati, and other astronomer-mathematicians of the Kerala school. It also exists in a Sanskrit version, with unclear author and date, composed as a rough translation of the Malayalam original.

<span class="mw-page-title-main">History of trigonometry</span>

Early study of triangles can be traced to the 2nd millennium BC, in Egyptian mathematics and Babylonian mathematics. Trigonometry was also prevalent in Kushite mathematics. Systematic study of trigonometric functions began in Hellenistic mathematics, reaching India as part of Hellenistic astronomy. In Indian astronomy, the study of trigonometric functions flourished in the Gupta period, especially due to Aryabhata, who discovered the sine function, cosine function, and versine function.

This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

Cadambur Tiruvenkatachari Rajagopal was an Indian mathematician.

<span class="mw-page-title-main">Trigonometry</span> Area of geometry, about angles and lengths

Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios such as sine.

In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function:

Madhava's sine table is the table of trigonometric sines constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama. The table lists the jya-s or Rsines of the twenty-four angles from 3.75° to 90° in steps of 3.75°. Rsine is just the sine multiplied by a selected radius and given as an integer. In this table, as in Aryabhata's earlier table, R is taken as 21600 ÷ 2π ≈ 3437.75.

Karanapaddhati is an astronomical treatise in Sanskrit attributed to Puthumana Somayaji, an astronomer-mathematician of the Kerala school of astronomy and mathematics. The period of composition of the work is uncertain. C.M. Whish, a civil servant of the East India Company, brought this work to the attention of European scholars for the first time in a paper published in 1834. The book is divided into ten chapters and is in the form of verses in Sanskrit. The sixth chapter contains series expansions for the value of the mathematical constant π, and expansions for the trigonometric sine, cosine and inverse tangent functions.

In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are:

The Kingdom of Tanur was one of the numerous feudal principalities on the Malabar Coast of the Indian subcontinent during the Middle Ages. It was ruled by a Hindu dynasty, claiming kshatriya status, known as the Tanur dynasty. The kingdom comprised parts of the coastal Taluks of Tirurangadi, Tirur, and Ponnani taluks in present-day Malappuram district and included places such as Tanur, Tirur (Trikkandiyur) and Chaliyam. The coastal villages of Kadalundi and Chaliyam in the southernmost area of Kozhikode district was also under Tanur Swaroopam.

In mathematics, Bhāskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhāskara I, a seventh-century Indian mathematician. This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhāskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhāskara might have used to arrive at his formula. The formula is elegant and simple, and it enables the computation of reasonably accurate values of trigonometric sines without the use of geometry.

A History of the Kerala School of Hindu Astronomy (in perspective) is the first definitive book giving a comprehensive description of the contribution of Kerala to astronomy and mathematics. The book was authored by K. V. Sarma who was a Reader in Sanskrit at Vishveshvaranand Institute of Sanskrit and Indological Studies, Panjab University, Hoshiarpur, at the time of publication of the book (1972). The book, among other things, contains details of the lives and works of about 80 astronomers and mathematicians belonging to the Kerala School. It has also identified 752 works belonging to the Kerala school.

Madhava's correction term is a mathematical expression attributed to Madhava of Sangamagrama, the founder of the Kerala school of astronomy and mathematics, that can be used to give a better approximation to the value of the mathematical constant π (pi) than the partial sum approximation obtained by truncating the Madhava–Leibniz infinite series for π. The Madhava–Leibniz infinite series for π is

References