MERIS

Last updated

MEdium Resolution Imaging Spectrometer (MERIS) was one of the main instruments on board the European Space Agency (ESA)'s Envisat platform. [1] The sensor was in orbit from 2002 to 2012. ESA formally announced the end of Envisat's mission on 9 May 2012.

Contents

A colourful summer marine phytoplankton bloom fills much of the Baltic Sea in this image captured by Envisat's MERIS on 13 July 2005. Envisat image of a phytoplankton bloom in the Baltic Sea ESA226711.jpg
A colourful summer marine phytoplankton bloom fills much of the Baltic Sea in this image captured by Envisat's MERIS on 13 July 2005.

This instrument was composed of five cameras disposed side by side, each equipped with a pushbroom spectrometer. These spectrometers used two-dimensional CCDs. One of the sides of the detector was oriented perpendicular to the trajectory of the satellite and simultaneously collected, through the front optics, observations for a line of points at the Earth's surface (or in the atmosphere). The displacement of the platform along its orbit, combined with a short integration time, generated data that was later used to create two-dimensional images. A light dispersing system separated the various wavelengths (colors) composing the incoming radiation at the entrance of the instrument and directed these on the detector along the second dimension, i.e., along-track. These spectrometers acquired data in many spectral bands. For technical reasons only 16 of the bands were actually transmitted to the ground segment (one of which is required for the low-level processing of the raw data). This instrument thus provided useful data in 15 spectral bands, which were actually programmable in position, width and gain. In practice these technical characteristics were kept constant most of the time to allow many systematic or operational missions.

The intrinsic spatial resolution of the detectors provided for samples every 300 m near nadir at the Earth's surface, and the pushbroom design avoided or minimized the distortions (e.g., bow tie effects) typical of scanning instruments. This is known as the 'Full Resolution (FR)' product. The more common 'Reduced Resolution (RR)' products were generated by aggregating the FR data to a nominal resolution of 1200 m. The total field of view of MERIS was 68.5 degrees around nadir (yielding a swath width of 1150 km), which was sufficient to collect data for the entire planet every three days (in equatorial regions). Polar regions were visited more frequently due to the convergence of orbits.

The primary objective of MERIS was to observe the color of the ocean, both in the open ocean (clear or Case I waters) and in coastal zones (turbid or Case II waters). [2] These observations were used to derive estimates of the concentration of chlorophyll and sediments in suspension in the water. It was also used for monitoring and mapping the deposits of seagrass Posidonia oceanica , in couple with the airborne HR/VHR (High/Very High Resolution) multispectral sensors for correcting the atmospheric and water column noise attenuation of the reflectance signals which arise from the shallow and turbid sea bottom waters in the Northern Mediterranean. [3] These measurements are useful to study the oceanic component of the global carbon cycle and the productivity of these regions, amongst other applications. The characterization of atmospheric properties (gaseous absorption and aerosol scattering) is essential to derive accurate information over the oceans because they contribute to the bulk of the signal measured (under clear skies) or simply because clouds prevent the observation of the underlying surface. In addition, this instrument is useful to monitor the evolution of terrestrial environments, such as the fraction of the solar radiation effectively used by plants in the process of photosynthesis, amongst many others applications.

See also

Related Research Articles

<span class="mw-page-title-main">Envisat</span> ESA Earth observation satellite (2002–2012)

Envisat is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

<span class="mw-page-title-main">European Remote-Sensing Satellite</span> European Space Agency Earth-observing satellite program

European Remote Sensing satellite (ERS) was the European Space Agency's first Earth-observing satellite programme using a polar orbit. It consisted of 2 satellites, ERS-1 and ERS-2.

<span class="mw-page-title-main">Satellite imagery</span> Images taken from an artificial satellite

Satellite images are images of Earth collected by imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell images by licensing them to governments and businesses such as Apple Maps and Google Maps.

<span class="mw-page-title-main">Advanced very-high-resolution radiometer</span>

The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.

<span class="mw-page-title-main">Imaging spectrometer</span>

An imaging spectrometer is an instrument used in hyperspectral imaging and imaging spectroscopy to acquire a spectrally-resolved image of an object or scene, often referred to as a datacube due to the three-dimensional representation of the data. Two axes of the image correspond to vertical and horizontal distance and the third to wavelength. The principle of operation is the same as that of the simple spectrometer, but special care is taken to avoid optical aberrations for better image quality.

<span class="mw-page-title-main">Copernicus Programme</span> Programme of the European Commission

Copernicus is the Earth observation component of the European Union Space Programme, managed by the European Commission and implemented in partnership with the EU Member States, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Joint Research Centre (JRC), the European Environment Agency (EEA), the European Maritime Safety Agency (EMSA), Frontex, SatCen and Mercator Océan.

<span class="mw-page-title-main">Ocean color</span> Explanation of the color of oceans and ocean color remote sensing

Ocean color is the branch of ocean optics that specifically studies the color of the water and information that can be gained from looking at variations in color. The color of the ocean, while mainly blue, actually varies from blue to green or even yellow, brown or red in some cases. This field of study developed alongside water remote sensing, so it is focused mainly on how color is measured by instruments.

<span class="mw-page-title-main">Netherlands Institute for Space Research</span>

SRON Netherlands Institute for Space Research (SRON) is the Dutch expertise institute for space research. It develops and uses innovative technology for analysis in space, focusing on astrophysical research, Earth observation, and exoplanetary research. SRON conducts research into new and more sensitive sensors for X-rays, infrared radiation, and visible light.

<span class="mw-page-title-main">NOAA-18</span>

NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.

<span class="mw-page-title-main">Landsat 8</span> American Earth-observing satellite launched in 2013 as part of the Landsat program

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and the United States Geological Survey (USGS). NASA Goddard Space Flight Center in Greenbelt, Maryland, provided development, mission systems engineering, and acquisition of the launch vehicle while the USGS provided for development of the ground systems and will conduct on-going mission operations. It comprises the camera of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which can be used to study Earth surface temperature and is used to study global warming.

<span class="mw-page-title-main">Sentinel-3</span> Earth observation satellite series

Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. It currently consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites— Sentinel-3C and Sentinel-3D— will follow in approximately 2025 and 2028 respectively to ensure continuity of the Sentinel-3 mission.

<span class="mw-page-title-main">ADEOS I</span> Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

GEOMS – Generic Earth Observation Metadata Standard is a metadata standard used for archiving data from groundbased networks, like the Network for the Detection of Atmospheric Composition Change (NDACC), and for using this kind of data for the validation of NASA and ESA satellite data.

IRS-1E was an Earth observation mission launched under the National Natural Resources Management System (NNRMS) programme by Indian Space Research Organisation (ISRO). Sometimes written IRS-P1. The objective of the mission was to develop Earth imagery using instruments carried on board. Due to a malfunction of the launch vehicle, the satellite deviated from its path and plunged into the Indian Ocean.

<span class="mw-page-title-main">Visible Infrared Imaging Radiometer Suite</span>

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.

PRISMA is an Italian Space Agency pre-operational and technology demonstrator mission focused on the development and delivery of hyperspectral products and the qualification of the hyperspectral payload in space.

<span class="mw-page-title-main">Sentinel-5 Precursor</span> Earth observation satellite

Sentinel-5 Precursor (Sentinel-5P) is an Earth observation satellite developed by ESA as part of the Copernicus Programme to close the gap in continuity of observations between Envisat and Sentinel-5.

<span class="mw-page-title-main">Sentinel-4</span> Earth observation satellite

Sentinel-4 is a European Earth observation mission developed to support the European Union Copernicus Programme for monitoring the Earth. It focuses on monitoring of trace gas concentrations and aerosols in the atmosphere to support operational services covering air-quality near-real time applications, air-quality protocol monitoring and climate protocol monitoring. The specific objective of Sentinel-4 is to support this with a high revisit time over Europe.

<span class="mw-page-title-main">Haiyang (satellite)</span> Chinese ocean observation satellite

Haiyang is a series of marine remote sensing satellites developed and operated by the People's Republic of China since 2002. As of October 2022, eight satellites have been launched with ten more planned. Built by the state-owned aerospace contractor China Academy of Space Technology (CAST), Haiyang satellites carry a variety of ocean-imaging sensor payloads and are operated by the National Satellite Ocean Application Service (NSOAS), a subordinate agency of the State Oceanic Administration (SOA). Haiyang satellites are launched from Taiyuan Satellite Launch Center (TSLC) into Sun-synchronous orbit (SSO) aboard Long March-series rockets.

<span class="mw-page-title-main">Hyperspectral Imager for the Coastal Ocean</span> Observation sensor on the International Space Station

The Hyperspectral Imager for the Coastal Ocean (HICO) was a hyperspectral earth observation sensor that operated on the International Space Station (ISS) from 2009 to 2014. HICO collected hyperspectral satellite imagery of the earth's surface from the ISS.

References

  1. Rast, M.; Bezy, J. L.; Bruzzi, S. (1999). "The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission". International Journal of Remote Sensing. Informa UK Limited. 20 (9): 1681–1702. Bibcode:1999IJRS...20.1681B. doi:10.1080/014311699212416. ISSN   0143-1161.
  2. Doerffer, R.; Sorensen, K.; Aiken, J. (1999). "MERIS potential for coastal zone applications". International Journal of Remote Sensing. Informa UK Limited. 20 (9): 1809–1818. Bibcode:1999IJRS...20.1809D. doi:10.1080/014311699212498. ISSN   0143-1161.
  3. Marco Marcelli; Sandro Martini; Alessandro Belmonte; Luigi De Cecco; Selvaggia Cognetti De Martis; Valentina Gnisci; Viviana Piermattei; Filippo Carli; Flavio Borfecchia; Carla Micheli (2013). "Mapping Spatial Patterns of Posidonia oceanica Meadows by Means of Daedalus ATM Airborne Sensor in the Coastal Area of Civitavecchia (Central Tyrrhenian Sea, Italy)". Remote Sens. 5 (10): 4877–4899. Bibcode:2013RemS....5.4877B. doi: 10.3390/rs5104877 . ISSN   2072-4292. OCLC   7181065136.