Reentry capsule

Last updated
Apollo 17 command module splashing down in the Pacific Ocean. Apollo-17-Landing.jpg
Apollo 17 command module splashing down in the Pacific Ocean.
Soyuz TMA reentry capsule after landing, 2005 Jsc2005e41361.jpg
Soyuz TMA reentry capsule after landing, 2005

A reentry capsule is the portion of a space capsule which returns to Earth following a spaceflight. The shape is determined partly by aerodynamics; a capsule is aerodynamically stable falling blunt end first, which allows only the blunt end to require a heat shield for atmospheric entry. A crewed capsule contains the spacecraft's instrument panel, limited storage space, and seats for crew members. Because a capsule shape has little aerodynamic lift, the final descent is via parachute, either coming to rest on land, at sea, or by active capture by an aircraft. In contrast, the development of spaceplane reentry vehicles attempts to provide a more flexible reentry profile.

Contents

Structure

Artwork of Apollo command module flying with the blunt end of the heat shield at a non-zero angle of attack in order to establish a lifting entry and control the landing site Apollo cm.jpg
Artwork of Apollo command module flying with the blunt end of the heat shield at a non-zero angle of attack in order to establish a lifting entry and control the landing site

Reentry capsules have typically been smaller than 5 meters (16 feet) in diameter due to launch vehicle aerodynamic requirements. The capsule design is both volumetrically efficient and structurally strong, so it is typically possible to construct small capsules of performance comparable to lifting body or spaceplane designs in all but lift-to-drag ratio for less cost. The Soyuz spacecraft is an example. Most capsules have used an ablative heat shield for reentry and been non-reusable. The Orion Multi-Purpose Crew Vehicle appears likely, as of December 2005, to use a ten-times reusable capsule with a replaceable heat shield. There is no limit, save for lack of engineering experience, on using high-temperature ceramic tiles or ultra-high temperature ceramic sheets on reentry capsules.

Materials for the capsule are designed in different ways, like the Apollo command module’s aluminum honeycomb structure. Aluminum is very light, and the structure gives the capsule extra strength. The early spacecraft had a coating of glass embedded with synthetic resin and put in very high temperatures. Carbon fiber, reinforced plastics and ceramic are new materials that are constantly being made better for use in space exploration.

Reentry

Most reentry capsules have used an ablative heat shield for reentry and been non-reusable. The early spacecraft had a coating of glass embedded with synthetic resin and put in very high temperatures.

Reentry capsules are well-suited to high energy reentries. Capsules reenter aft-end first with the occupants lying down, as this is the optimum position for the human body to withstand the g-forces induced as the capsule impacts the atmosphere. The rounded shape (blunt body) of a capsule forms a shock wave that keeps most of the heat away from the heat shield, but a thermal protection system is still necessary. The space capsule must be strong enough to withstand reentry forces such as drag, and must reenter at a precise angle of attack to prevent a skip off the surface of the atmosphere or destructively high accelerations.

When the reentry capsule comes through the atmosphere the capsule compresses the air in front of it, which heats up to very high temperatures. The surface temperature of a capsule can reach 1,480 °C (2,700 °F) as it descends through the Earth's atmosphere.[ citation needed ] To prevent this heat from reaching interior structures, capsules are typically equipped with an ablative heat shield that chars and vaporizes, removing the heat.

The Apollo command module reentered with the center of mass offset from the center line; this caused the capsule to assume an angled attitude through the air, providing lift that could be used for directional control. Reaction control system thrusters were used to steer the capsule by rotating the lift vector.

Parachutes are used for the final descent, sometimes augmented by braking rockets if the capsule is designed to land on the Earth's surface. Examples of land landing capsules include Vostok, Voskhod, Soyuz, Shenzhou and the Boeing CST-100 Starliner. Other capsules, such as Mercury, Gemini, Apollo, Orion, and Dragon, splash down in the ocean.

Aerodynamic heating

Capsules are well-suited to high-temperature and dynamic loading reentries. Whereas delta-wing gliders such as the Space Shuttle can reenter from Low Earth Orbit, and lifting bodies are capable of entry from as far away as the Moon, it is rare to find designs for reentry vehicles from Mars that are not capsules. The current RKK Energia design for the Kliper, being capable of flights to Mars, is an exception.

Engineers building a reentry capsule must take forces such as gravity and drag into consideration. The capsule must be strong enough to slow down quickly, must endure extremely high or low temperatures, and must survive the landing. When the capsule comes close to a planet's or moon's surface, it has to slow down at a very exact rate. If it slows down too quickly, everything in the capsule will be crushed. If it does not slow down quickly enough, it will crash into the surface and be destroyed. There are additional requirements for atmospheric reentry. If the angle of attack is too shallow, the capsule may skip off the surface of the atmosphere. If the angle of attack is too steep, the deceleration forces may be too high or the heat of reentry may exceed the tolerances of the heat shield.

Capsules reenter aft-end first with the occupants lying down, as this is the optimum position for the human body to withstand the decelerative g-force. The aft end is formed in a rounded shape (blunt body), as this forms a shock wave that doesn't touch the capsule, and the heat is deflected away rather than melting the vehicle.

The Apollo Command Module reentered with the center of mass offset from the center line; this caused the capsule to assume an angled attitude through the air, providing a sideways lift to be used for directional control. Rotational thrusters were used to steer the capsule under either automatic or manual control by changing the lift vector.

At lower altitudes and speeds parachutes are used to slow the capsule down by making more drag.

Capsules also have to be able to withstand the impact when they reach the Earth's surface. All US crewed capsules (Mercury, Gemini, Apollo) landed on water; the Soviet/Russian Soyuz and Chinese Shenzhou (and planned US, Russian, and Indian) crewed capsules use small retrorockets to touch down on land. In the lighter gravity of Mars, airbags are sufficient to land some of the robotic missions safely.

Gravity, drag, and lift

Two of the biggest external forces that a reentry capsule experiences are gravity and drag.

Drag is the capsule's resistance to it moving through air. Air is a mixture of different molecules, including nitrogen, oxygen and carbon dioxide. Anything falling through air hits these molecules and therefore slows down. The amount of drag on a capsule depends on many things, including the density of the air, and the shape, mass, diameter and roughness of the capsule. The speed of a spacecraft highly depends on the combined effect of the two forces gravity, which can speed up a rocket, and drag, which will slow down the rocket. Capsules entering Earth's atmosphere will be considerably slowed because our atmosphere is so thick.

When the capsule comes through the atmosphere, it compresses the air in front of it which heats up to very high temperatures (contrary to popular belief friction is not significant).

A good example of this is a shooting star. A shooting star, which is usually tiny, creates so much heat coming through the atmosphere that the air around the meteorite glows white hot. So when a huge object like a capsule comes through, even more heat is created.

As the capsule slows down, the compression of the air molecules hitting the capsules surface creates a lot of heat. The surface of a capsule can get to 1,480 °C (2,700 °F) as it descends through the Earth's atmosphere. All this heat has to be directed away. Reentry capsules are typically coated with a material that melts and then vaporizes ("ablation"). It may seem counterproductive, but the vaporization takes heat away from the capsule. This keeps the reentry heat from getting inside the capsule. Capsules see a more intense heating regime than spaceplanes and ceramics such as used on the Space Shuttle are usually less suitable, and all capsules have used ablation.

In practice, capsules do create a significant and useful amount of lift. This lift is used to control the trajectory of the capsule, allowing reduced g-forces on the crew, as well as reducing the peak heat transfer into the capsule. The longer the vehicle spends at high altitude, the thinner the air is and the less heat is conducted. For example, the Apollo CM had a lift to drag ratio of about 0.35. In the absence of any lift the Apollo capsule would have been subjected to about 20g deceleration (8g for low-Earth-orbiting spacecraft), but by using lift the trajectory was kept to around 4g.[ citation needed ]

Current designs

Shenzhou

The reentry capsule is the "middle" module of the three-part Soyuz or Shenzhou spacecraft – the orbital module is located at the front of the spacecraft, with the service or equipment module attached to the rear. A feature in the landing system allows the use of a single parachute and "braking rocket", thus the heatshield is dropped from the spacecraft similar to the landing bag deployment on the U.S. Mercury spacecraft. Like the Command Module of the Apollo spacecraft, the Shenzhou reentry capsule has no reusable capabilities; each spacecraft is flown once and then "thrown away" (usually sent to museums).

Few details are known about the Shenzhou reentry capsule, except that it uses some technology from the Soyuz TM design. The new Soyuz TMA spacecraft, now used solely for International Space Station flights, had its couches modified to allow for taller crewmembers to fly, and features "glass cockpit" technology similar to that found on the Space Shuttle and newer commercial and military aircraft.

Soyuz

The former Soviet Union suffered two disasters, and one near-disaster, all three involving the capsule during the de-orbit and reentry. Soyuz 1 ended in disaster when the parachutes failed to deploy and the capsule smashed into the earth at speeds over 300 mph (483 km/h), killing cosmonaut Vladimir Komarov. Soyuz 5 almost ended in disaster, when the reentry capsule entered the atmosphere nose first – attributed to a failure of the service module to separate similar to that on the Vostok 1 flight. Luckily, the service module was burned off and the capsule righted itself.

Soyuz 11 ended in disaster in 1971 when an equalization valve, used to equalize air pressure during the Soyuz final descent, prematurely opened in the vacuum of space, killing the three crew members, who were not wearing spacesuits. Subsequent flights, from Soyuz 12 to Soyuz 40, utilized a two-man crew because the third seat had to be removed for the pressure suit controls. The Soyuz-T version restored the third seat.

List of reentry capsules


Flight-proven:

In development:

Related Research Articles

<span class="mw-page-title-main">Human spaceflight</span> Spaceflight with a crew or passengers

Human spaceflight is spaceflight with a crew or passengers aboard a spacecraft, often with the spacecraft being operated directly by the onboard human crew. Spacecraft can also be remotely operated from ground stations on Earth, or autonomously, without any direct human involvement. People trained for spaceflight are called astronauts, cosmonauts (Russian), or taikonauts (Chinese); and non-professionals are referred to as spaceflight participants or spacefarers.

<span class="mw-page-title-main">Spacecraft</span> Vehicle or machine designed to fly in space

A spacecraft is a vehicle that is designed to fly in outer space and operate there. Spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle.

<span class="mw-page-title-main">Atmospheric entry</span> Passage of an object through the gases of an atmosphere from outer space

Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris, or bolides; and controlled entry of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

<span class="mw-page-title-main">Soyuz programme</span> Human spaceflight programme of the Soviet Union

The Soyuz programme is a human spaceflight programme initiated by the Soviet Union in the early 1960s. The Soyuz spacecraft was originally part of a Moon landing project intended to put a Soviet cosmonaut on the Moon. It was the third Soviet human spaceflight programme after the Vostok (1961–1963) and Voskhod (1964–1965) programmes.

<span class="mw-page-title-main">Shenzhou (spacecraft)</span> Class of crewed spacecraft from China

Shenzhou is a spacecraft developed and operated by China to support its crewed spaceflight program, China Manned Space Program. Its design resembles the Russian Soyuz spacecraft, but it is larger in size. The first launch was on 19 November 1999 and the first crewed launch was on 15 October 2003. In March 2005, an asteroid was named 8256 Shenzhou in honour of the spacecraft.

<span class="mw-page-title-main">Soyuz (spacecraft)</span> Series of spacecraft designed for the Soviet space programme

Soyuz is a series of spacecraft which has been in service since the 1960s, having made more than 140 flights. It was designed for the Soviet space program by the Korolev Design Bureau. The Soyuz succeeded the Voskhod spacecraft and was originally built as part of the Soviet crewed lunar programs. It is launched on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. Between the 2011 retirement of the Space Shuttle and the 2020 demo flight of SpaceX Crew Dragon, the Soyuz served as the only means to ferry crew to or from the International Space Station, for which it remains heavily used. Although China did launch crewed Shenzhou flights during this time, none of them docked with the ISS.

<span class="mw-page-title-main">Soyuz 5</span> Crewed flight of the Soyuz programme

Soyuz 5 was a Soyuz mission using the Soyuz 7K-OK spacecraft launched by the Soviet Union on 15 January 1969, which docked with Soyuz 4 in orbit. It was the first docking of two crewed spacecraft of any nation, and the first transfer of crew from one space vehicle to another of any nation, the only time a transfer was accomplished with a space walk – two months before the United States Apollo 9 mission performed the first internal crew transfer.

Human spaceflight programs have been conducted, started, or planned by multiple countries and companies. Until the 21st century, human spaceflight programs were sponsored exclusively by governments, through either the military or civilian space agencies. With the launch of the privately funded SpaceShipOne in 2004, a new category of human spaceflight programs – commercial human spaceflight – arrived. By the end of 2022, three countries and one private company (SpaceX) had successfully launched humans to Earth orbit, and two private companies had launched humans on a suborbital trajectory.

<span class="mw-page-title-main">Vostok (spacecraft)</span> First crewed spacecraft built by the Soviet Union

Vostok was a class of single-pilot crewed spacecraft built by the Soviet Union. The first human spaceflight was accomplished with Vostok 1 on April 12, 1961, by Soviet cosmonaut Yuri Gagarin.

<span class="mw-page-title-main">Voskhod (spacecraft)</span>

The Voskhod was a spacecraft built by the Soviet Union's space program for human spaceflight as part of the Voskhod programme. It was a development of and a follow-on to the Vostok spacecraft. Voskhod 1 was used for a three-man flight whereas Voskhod 2 had a crew of two. They consisted of a spherical descent module, which housed the cosmonauts, and instruments, and a conical equipment module, which contained propellant and the engine system. Voskhod was superseded by the Soyuz spacecraft in 1967.

A service module is a component of a crewed space capsule containing a variety of support systems used for spacecraft operations. Usually located in the uninhabited area of the spacecraft, the service module serves a storehouse of critical subsystems and supplies for the mission such as electrical systems, environmental control, and propellant tanks. The service module is jettisoned upon the completion of the mission, and usually burns up during atmospheric reentry.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Orbital spaceflight</span> Spaceflight where spacecraft orbits an astronomical body

An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit or sub-orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Retrorocket</span> Rocket engine providing negative thrust used to slow the motion of an aerospace vehicle

A retrorocket is a rocket engine providing thrust opposing the motion of a vehicle, thereby causing it to decelerate. They have mostly been used in spacecraft, with more limited use in short-runway aircraft landing. New uses are emerging since 2010 for retro-thrust rockets in reusable launch systems.

<span class="mw-page-title-main">Orbital module</span>

The orbital module is a compartment of some space capsules used only in orbit. It is separated from the crewed reentry capsule before reentry. The orbital module provides 'habitat' space to use in orbit, while the reentry capsule tends to be focused on the machinery needed to get seated passengers back safely, with heavy structural margins. These have been developed for the Soyuz spacecraft.

<span class="mw-page-title-main">Soyuz TMA</span> Revision of the Soyuz spacecraft

The Soyuz-TMA is a spacecraft used by the Russian Federal Space Agency for human spaceflight. It is a revision of the Soyuz spacecraft and was superseded in 2010 by the Soyuz TMA-M.(T – транспортный – Transportnyi – meaning transport, M – модифицированный – Modifitsirovannyi – meaning modified, A – антропометрический, – Antropometricheskii meaning anthropometric). The spacecraft features several changes to accommodate requirements requested by NASA in order to service the International Space Station, including more latitude in the height and weight of the crew and improved parachute systems. It is also the first expendable vehicle to feature a "glass cockpit". Soyuz-TMA looks identical to the earlier Soyuz-TM spacecraft on the outside, but interior differences allow it to accommodate taller occupants with new adjustable crew couches.

Advanced Gemini is a number of proposals that would have extended the Gemini program by the addition of various missions, including crewed low Earth orbit, circumlunar and lunar landing missions. Gemini was the second crewed spaceflight program operated by NASA, and consisted of a two-seat spacecraft capable of maneuvering in orbit, docking with uncrewed spacecraft such as Agena Target Vehicles, and allowing the crew to perform tethered extra-vehicular activities.

<span class="mw-page-title-main">Soyuz MS</span> Latest revision of the Soyuz spacecraft

The Soyuz MS is a revision of the Russian spacecraft series Soyuz first launched in 2016. It is an evolution of the Soyuz TMA-M spacecraft, with modernization mostly concentrated on the communications and navigation subsystems. It is used by Roscosmos for human spaceflight. The Soyuz MS has minimal external changes with respect to the Soyuz TMA-M, mostly limited to antennas and sensors, as well as the thruster placement.

References

See also