Self-contained breathing apparatus

Last updated
Toronto firefighter wearing an SCBA TFS SCBA gear.jpg
Toronto firefighter wearing an SCBA
In an atmosphere that may be oxygen-deficient, an air supply is carried on the back. RAF Firefighter MOD 45154261.jpg
In an atmosphere that may be oxygen-deficient, an air supply is carried on the back.

A self-contained breathing apparatus (SCBA) is a device worn to provide an autonomous supply of breathable gas in an atmosphere that is immediately dangerous to life or health. They are typically used in firefighting and industry. The term self-contained means that the SCBA is not dependent on a remote supply of breathing gas (e.g., through a long hose). If designed for use under water, it is also known as a scuba set (self-contained underwater breathing apparatus). When not used underwater, they are sometimes called industrial breathing sets. Some types are also referred to as a compressed air breathing apparatus (CABA) or simply breathing apparatus (BA). Unofficial names include air pack, air tank, oxygen cylinder or simply pack, which are mostly used in firefighting.

Contents

An open circuit SCBA typically has three main components: a high-pressure gas storage cylinder, (e.g., 2,216 to 5,500  psi (15,280 to 37,920  kPa ), about 150 to 374 atmospheres), a pressure regulator, and a respiratory interface, which may be a mouthpiece, half mask or full-face mask, assembled and mounted on a framed carrying harness. [1]

A self-contained breathing apparatus may fall into one of two categories: open-circuit or closed-circuit. [2]

Types

Closed-circuit

Siebe Gorman Savox in a coal mining museum Aa savox1.jpg
Siebe Gorman Savox in a coal mining museum

The closed-circuit type, also known as a rebreather, operates by filtering, supplementing, and recirculating exhaled gas. It is used when a longer-duration supply of breathing gas is needed, such as in mine rescue and in long tunnels, and going through passages too narrow for a big open-circuit air cylinder. Before open-circuit SCBA's were developed, most industrial breathing sets were rebreathers, such as the Siebe Gorman Proto, Siebe Gorman Savox, or Siebe Gorman Salvus. An example of modern rebreather SCBAs would be the SEFA.

Open-circuit

A person wearing an MSA brand breathing mask with a Nomex hood. This face piece attaches with a regulator to form a full SCBA. SCBA Mask JustinDiPierro.jpg
A person wearing an MSA brand breathing mask with a Nomex hood. This face piece attaches with a regulator to form a full SCBA.
SCBA packs carried on a rack in a firetruck SCBA TruckMount JDiPierro.jpg
SCBA packs carried on a rack in a firetruck

Open-circuit industrial breathing sets are filled with filtered, compressed air. Typical open-circuit systems have two stage regulators. The first stage reduces the pressure from storage pressure of up to more than 300 bar to about 10 bar for supply to the second stage on the mask, which further reduces it to just above atmospheric pressure via a demand valve when the pressure drops on inhalation. A positive pressure mask has the demand valve set to close when the pressure inside the mask is slightly above the external ambient pressure, so when the mask is removed from the face or leaks around the skirt, the demand valve will free-flow.

An open-circuit rescue or firefighting SCBA has a full-face mask, also called the face-piece, a demand regulator, air cylinder, pressure gauge, (sometimes with an integrated PASS device), and a harness with adjustable shoulder straps and waist belt which lets it be worn on the back. The air cylinder is commonly 4 liter, 6 liter, or 6.8 liter, but other sizes are also available.[ citation needed ] The endurance of the cylinder can be calculated from the volume, pressure and breathing rate of the user. The formula: volume (in liters) × pressure (in bars) / 40 (litres per minute) - 10 minutes (the 10 minutes is a safety margin, or reserve), so a 6-liter cylinder, of 300 bar, is 6 × 300 / 40 - 10 = 35 minutes working duration. The fitness and level of exertion of the wearer affect breathing rate, and result in variations of the actual usable time of the SCBA.

SCBA pack with PASS device (ADSU) PASS device.png
SCBA pack with PASS device (ADSU)

Air cylinders are made of aluminium, steel, or of a composite construction (usually glass or carbon-fiber wrapped.) The composite cylinders are the lightest in weight and are therefore preferred by fire departments (UK: fire and rescue services previously called fire brigades), but they also have the shortest lifespan and must be taken out of service after 15 years. Air cylinders must be hydrostatically tested every 5 years.[ citation needed ][ clarification needed ] During extended operations, empty air cylinders can be quickly replaced with fresh ones and then refilled from larger tanks in a cascade storage system or from an air compressor brought to the scene.

Positive versus negative pressure

Open circuit SCBAs use either "positive pressure" or "negative pressure" operation.

A negative pressure system relies on the internal pressure of the mask dropping to below the ambient pressure to activate flow. if the mask does not seal perfectly, some leakage of ambient gas into the mask will occur, which can be a problem with toxic or irritant smoke and fumes.

A positive pressure system slightly pressurises the interior of the mask and activates flow when the pressure difference is reduced, but still slightly above ambient. If the mask leaks, there will be continuous flow to maintain the pressure, and no inward leakage is possible. With a good fit this is economical on gas and prevents contamination. If the mask falls off the regulator will continuously expend gas trying to raise the pressure, and may consume a significant amount of gas before it is corrected.

Although the performance of both types of SCBA may be similar under optimum conditions, this "fail safe" behaviour makes a positive pressure SCBA preferable for most applications. As there is usually no air usage penalty in providing positive pressure, the negative pressure type is, in most cases, an obsolete configuration and is only seen with older equipment. However some users refuse to use this technology as in case of a damage or loss of the facepiece the air will be released uncontrolled. The leakage rate can be so high that a fully charged SCBA will be drained in less than three minutes,[ citation needed ] a problem that does not happen with negative pressure SCBA systems, which will simply allow the user to breathe the contaminated air leaking unto the facepiece instead of the air from the cylinder.

Masks

The fullface masks of breathing apparatus designed for use out of water are sometimes designed in a way that makes them unsuitable for scuba diving, although some may allow very shallow emergency submersion:

The mask can have a large viewport, or small eye lenses.[ citation needed ]

The mask might have a small orinasal breathing mask inside, reducing breathing deadspace.[ citation needed ]

The mask can also incorporate a two-way radio communicator.[ citation needed ]

Some early industrial rebreathers (e.g., the Siebe Gorman Proto) had a mouthpiece and attached noseclip instead of a mask.

Usage

Elastomeric masks linked to backpack air tanks: self-contained breathing apparatus, worn by firefighters advancing with a firehose. Interschutz 2010 Brandbekampfung (1).jpg
Elastomeric masks linked to backpack air tanks: self-contained breathing apparatus, worn by firefighters advancing with a firehose.

There are two major application areas for SCBA: firefighting and industrial use.[ citation needed ] A third use now coming into practice is medical; for example, the American National Institutes of Health prescribe use of SCBAs for medical staff during treatment of ebola.

For firefighting, the design emphasis is on heat and flame resistance above cost. SCBAs designed for firefighting tend to be expensive because of the exotic materials used to provide the flame resistance, and to a lesser extent, to reduce the weight penalty on the firefighter. In addition, modern firefighting SCBAs incorporate a PASS device (personal alert safety system) or an ADSU (automatic distress signal unit) into their design. These units emit distinctive, high-pitched alarm tones to help locate firefighters in distress by automatically activating if movement is not sensed for a certain length of time (typically between 15 and 30 seconds), also allowing for manual activation should the need arise. In firefighting use, the layout of this breathing set should not interfere with ability to carry a rescued person over the firefighter's shoulders.

The other major application is for industrial users of various types. Historically, mining was an important area, and in Europe this is still reflected by limitations on use in the construction of SCBAs of metals that can cause sparks. Other important users are petrochemical, chemical, and nuclear industries. The design emphasis for industrial users depends on the precise application and extends from the bottom end which is cost critical, to the most severe environments where the SCBA is one part of an integrated protective environment which includes gas-tight suits for whole-body protection and ease of decontamination. Industrial users will often be supplied with air via an air line, and only carry compressed air for escape or decontamination purposes.

Temperature effect on pressure

The pressure gauge's indicated gas pressure changes with ambient temperature. As temperature decreases, the pressure inside the cylinder decreases. The relationship between the temperature and the pressure of a gas is defined by the formula PV = nRT. (See Universal gas constant.) The temperature is absolute, referenced to absolute zero, and may be in kelvins, or Rankine. [3] The absolute change in temperature from 32 to 96 °F (0 to 36 °C) is by a factor of 1.13 (308.71 K/273.15 K). If an air cylinder is pressurized to 4,500 psi at 96 °F and later the temperature drops to 32 °F, the pressure gauge will indicate 4,000 psi (4,500/1.13). Stated differently, a drop in temperature of 10 °F (5.5 °C) causes a pressure decrease of about 82 psi (565 kPa). Failure to accurately account for the effect of temperature on pressure readings can result in underfilled air cylinders, which in turn could lead to a firefighter running out of air prematurely.

Regulation and standards

Volunteer fire fighter exiting live burn structure wearing NIOSH-certified SCBA, NFPA compliant turn-out gear, and holding a pike pole Volunteer Fire Fighter.jpg
Volunteer fire fighter exiting live burn structure wearing NIOSH-certified SCBA, NFPA compliant turn-out gear, and holding a pike pole

In the United States and Canada, SCBAs used in firefighting must meet guidelines established by the National Fire Protection Association, NFPA Standard 1981. If an SCBA is labeled as "1981 NFPA compliant", it is designed for firefighting. The current version of the standard was published in 2018. [4] These standards are revised every five years. Similarly, the National Institute for Occupational Safety and Health (NIOSH) has a certification program for SCBA that are intended to be used in chemical, biological, radiological, and nuclear (CBRN) environments.

Any SCBA supplied for use in Europe must comply with the requirements of the Personal Protective Equipment Directive (89/686/EEC). In practice this usually means that the SCBA must comply with the requirements of the European Standard EN 137:2006. This includes detailed requirements for the performance of the SCBA, the marking required, and the information to be provided to the user. Two classes of SCBA are recognised, Type 1 for industrial use and Type 2 for firefighting. Any SCBA conforming to this standard will have been verified to reliably operate and protect the user from -30 °C to +60 °C under a wide range of severe simulated operational conditions.

Examples

The Royal Australian Navy uses the open circuit compressed air breathing apparatus (OCCABA), a backpack-style, positive pressure breathing apparatus, for firefighting roles.

See also

Notes

  1. IFSTA 2008, p. 190.
  2. IFSTA 2008, p. 191.
  3. Online Conversion – Temperature Conversion Archived 2016-02-19 at the Wayback Machine .
  4. "NFPA". NFPA. Archived from the original on 6 April 2018. Retrieved 5 May 2018.

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Aqua-Lung</span> Original name for open-circuit scuba equipment

Aqua-Lung was the first open-circuit, self-contained underwater breathing apparatus to achieve worldwide popularity and commercial success. This class of equipment is now commonly referred to as a twin-hose diving regulator, or demand valve. The Aqua-Lung was invented in France during the winter of 1942–1943 by two Frenchmen: engineer Émile Gagnan and Jacques Cousteau, who was a Naval Lieutenant. It allowed Cousteau and Gagnan to film and explore underwater more easily.

<span class="mw-page-title-main">Rebreather</span> Portable apparatus to recycle breathing gas

A rebreather is a breathing apparatus that absorbs the carbon dioxide of a user's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the user. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, eliminating the bubbles produced by an open circuit system and in turn not scaring wildlife being filmed. A rebreather is generally understood to be a portable unit carried by the user. The same technology on a vehicle or non-mobile installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Full-face diving mask</span> Diving mask that covers the mouth as well as the eyes and nose

A full-face diving mask is a type of diving mask that seals the whole of the diver's face from the water and contains a mouthpiece, demand valve or constant flow gas supply that provides the diver with breathing gas. The full face mask has several functions: it lets the diver see clearly underwater, it provides the diver's face with some protection from cold and polluted water and from stings, such as from jellyfish or coral. It increases breathing security and provides a space for equipment that lets the diver communicate with the surface support team.

<span class="mw-page-title-main">Siebe Gorman CDBA</span> Type of diving rebreather used by the Royal Navy

The Clearance Divers Breathing Apparatus (CDBA) is a type of rebreather made by Siebe Gorman in England.

<span class="mw-page-title-main">Siebe Gorman Salvus</span> Industrial rescue and shallow water oxygen rebreather

The Siebe Gorman Salvus is a light oxygen rebreather for industrial use or in shallow diving. Its duration on a filling is 30 to 40 minutes. It was very common in Britain during World War II and for a long time afterwards. Underwater the Salvus is very compact and can be used where a diver with a bigger breathing set cannot get in, such as inside cockpits of ditched aircraft. It was made by Siebe Gorman & Company, LTD in London, England. It was designed in the early 1900s.

<span class="mw-page-title-main">Respirator</span> Device worn to protect the user from inhaling contaminants

A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respirators: the air-purifying respirator, in which respirable air is obtained by filtering a contaminated atmosphere, and the air-supplied respirator, in which an alternate supply of breathable air is delivered. Within each category, different techniques are employed to reduce or eliminate noxious airborne contaminants.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Hazmat suit</span> Protective suit against chemical, bacteriological, and nuclear risks

A hazmat suit is a piece of personal protective equipment that consists of an impermeable whole-body garment worn as protection against hazardous materials.

<span class="mw-page-title-main">Siebe Gorman Proto</span> Industrial rescue rebreather set

The Proto is a type of rebreather that was made by Siebe Gorman. It was an industrial breathing set and not suitable for diving. It was made from 1914 or earlier to the 1960s or later.. Also known as proto suits.

<span class="mw-page-title-main">Escape breathing apparatus</span> Self contained breathing apparatus providing gas to escape from a hazardous environment

Escape breathing apparatus, also called escape respirators, escape sets, self-rescuer masks, emergency life saving apparatus (ELSA), and emergency escape breathing devices (EEBD), are portable breathing apparatus that provide the wearer with respiratory protection for a limited period, intended for escape from or through an environment where there is no breathable ambient atmosphere. This includes escape through water and in areas containing harmful gases or fumes or other atmospheres immediately dangerous to life or health (IDLH).

<span class="mw-page-title-main">Breathing performance of regulators</span> Measurement and requirements of function of breathing regulators

The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and temperatures, and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and temperatures, and variety of breathing gases is broader in this application. A diving regulator is a device that reduces the high pressure in a diving cylinder or surface supply hose to the same pressure as the diver's surroundings. It is desirable that breathing from a regulator requires low effort even when supplying large amounts of breathing gas as this is commonly the limiting factor for underwater exertion, and can be critical during diving emergencies. It is also preferable that the gas is delivered smoothly without any sudden changes in resistance while inhaling or exhaling, and that the regulator does not lock up and either fail to supply gas or free-flow. Although these factors may be judged subjectively, it is convenient to have standards by which the many different types and manufactures of regulators may be objectively compared.

<span class="mw-page-title-main">Scott Air-Pak SCBA</span> Firefighting breathing apparatus

The Scott Air-Pak SCBA is an open-circuit, self-contained breathing apparatus designed to meet the National Fire Protection Association (NFPA) Standard 1981. All components, excluding the air cylinder, were designed and manufactured by Scott Safety. Formerly a division of Tyco International, Ltd., Scott Safety was sold to 3M in 2017.

<span class="mw-page-title-main">Underwater breathing apparatus</span> Equipment which provides breathing gas to an underwater diver

Underwater breathing apparatus is equipment which allows the user to breathe underwater. The three major categories of ambient pressure underwater breathing apparatus are:

<span class="mw-page-title-main">History of underwater diving</span>

The history of underwater diving starts with freediving as a widespread means of hunting and gathering, both for food and other valuable resources such as pearls and coral. By classical Greek and Roman times commercial applications such as sponge diving and marine salvage were established. Military diving also has a long history, going back at least as far as the Peloponnesian War, with recreational and sporting applications being a recent development. Technological development in ambient pressure diving started with stone weights (skandalopetra) for fast descent. In the 16th and 17th centuries diving bells became functionally useful when a renewable supply of air could be provided to the diver at depth, and progressed to surface-supplied diving helmets—in effect miniature diving bells covering the diver's head and supplied with compressed air by manually operated pumps—which were improved by attaching a waterproof suit to the helmet and in the early 19th century became the standard diving dress.

<span class="mw-page-title-main">Diving rebreather</span> Closed or semi-closed circuit scuba

A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Supplied-air respirator</span> Breathing apparatuus remotely supplied by an air hose

A supplied-air respirator (SAR) or air-line respirator is a breathing apparatus used in places where the ambient air may not be safe to breathe. It uses an air hose to supply air from outside the danger zone. It is similar to a self-contained breathing apparatus (SCBA), except that SCBA users carry their air with them in high pressure cylinders, while SAR users get it from a remote stationary air supply connected to them by a hose.

<span class="mw-page-title-main">High altitude breathing apparatus</span> Equipment which allows the user to breathe at hypoxic altitudes

High altitude breathing apparatus is breathing apparatus which allows a person to breathe more effectively at an altitude where the partial pressure of oxygen in the ambient atmospheric air is insufficient for the task or to sustain consciousness or human life over the long or short term.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

References