Chrysomerophyceae

Last updated

Chrysomerophyceae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Class: Chrysomerophyceae
Cavalier-Smith 1995
Order: Chrysomeridales
C.J.O'Kelly & C.Billard ex H.R.Preisig
Family: Chrysomeridaceae
Bourrelly
Genera

Chrysomerophyceae is a monotypic class of photosynthetic heterokont eukaryotes. [1] [2]

Contents

Taxonomy

Related Research Articles

<span class="mw-page-title-main">Noctilucales</span> Order of single-celled organisms

The Noctilucales are an order of marine dinoflagellates. They differ from most others in that the mature cell is diploid and its nucleus does not show a dinokaryotic organization. They show gametic meiosis.

<span class="mw-page-title-main">Sea lettuce</span> Genus of seaweeds

The sea lettuces comprise the genus Ulva, a group of edible green algae that is widely distributed along the coasts of the world's oceans. The type species within the genus Ulva is Ulva lactuca, lactuca being Latin for "lettuce". The genus also includes the species previously classified under the genus Enteromorpha, the former members of which are known under the common name green nori.

<span class="mw-page-title-main">Cristidiscoidea</span> Proposed basal holomycota clade

Cristidiscoidea or Nucleariae is a proposed basal holomycota clade in which Fonticula and Nucleariida emerged, as sister of the fungi. Since it is close to the divergence between the main lineages of fungi and animals, the study of Cristidiscoidea can provide crucial information on the divergent lifestyles of these groups and the evolution of opisthokonts and slime mold multicellularity. The holomycota tree is following Tedersoo et al.

<span class="mw-page-title-main">Archamoebae</span> Phylum of protists

The Archamoebae are a group of protists originally thought to have evolved before the acquisition of mitochondria by eukaryotes. They include genera that are internal parasites or commensals of animals. A few species are human pathogens, causing diseases such as amoebic dysentery. The other genera of archamoebae live in freshwater habitats and are unusual among amoebae in possessing flagella. Most have a single nucleus and flagellum, but the giant amoeba Pelomyxa has many of each.

<span class="mw-page-title-main">Pelagophycidae</span> Subclass of algae

Pelagophycidae is a subclass of heterokont algae.It is the sister group of the axodines. Together, they form the class Dictyochophyceae.

<span class="mw-page-title-main">Eustigmatophyte</span> A small group of algae with marine, freshwater and soil-living species

Eustigmatophytes are a small group of eukaryotic forms of algae that includes marine, freshwater and soil-living species.

<span class="mw-page-title-main">Blastocladiomycota</span> Phylum of flagellated fungi

Blastocladiomycota is one of the currently recognized phyla within the kingdom Fungi. Blastocladiomycota was originally the order Blastocladiales within the phylum Chytridiomycota until molecular and zoospore ultrastructural characters were used to demonstrate it was not monophyletic with Chytridiomycota. The order was first erected by Petersen for a single genus, Blastocladia, which was originally considered a member of the oomycetes. Accordingly, members of Blastocladiomycota are often referred to colloquially as "chytrids." However, some feel "chytrid" should refer only to members of Chytridiomycota. Thus, members of Blastocladiomycota are commonly called "blastoclads" by mycologists. Alternatively, members of Blastocladiomycota, Chytridiomycota, and Neocallimastigomycota lumped together as the zoosporic true fungi. Blastocladiomycota contains 5 families and approximately 12 genera. This early diverging branch of kingdom Fungi is the first to exhibit alternation of generations. As well, two (once) popular model organisms—Allomyces macrogynus and Blastocladiella emersonii—belong to this phylum.

<span class="mw-page-title-main">Bolidophyceae</span> Class of algae

Bolidophyceae is a class of photosynthetic heterokont picophytoplankton, and consist of less than 20 known species. They are distinguished by the angle of flagellar insertion and swimming patterns as well as recent molecular analyses. Bolidophyceae is the sister taxon to the diatoms (Bacillariophyceae). They lack the characteristic theca of the diatoms, and have been proposed as an intermediate group between the diatoms and all other heterokonts.

<span class="mw-page-title-main">Dictyochophyceae</span> Class of single-celled organisms

Dictyochophyceae sensu lato is a photosynthetic lineage of heterokont algae.

<span class="mw-page-title-main">Pavlovaceae</span> Family of single-celled organisms

Pavlovaceae is a family of haptophytes. It is the only family in the order Pavlovales, which is the only order in the class Pavlovophyceae. It contains four genera, Diacronema, Exanthemachrysis, Pavlova and Rebecca.

<span class="mw-page-title-main">Dinophyceae</span> Class of single-celled organisms

Dinophyceae is a class of dinoflagellates.

<span class="mw-page-title-main">Filasterea</span> Basal Filozoan clade

Filasterea is a proposed basal Filozoan clade of single-celled ameboid eukaryotes that includes Ministeria and Capsaspora. It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared, originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with dozens of genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses.

Olpidiaceae is a fungal plant pathogen family of genera that was placed in the order Olpidiales.

<span class="mw-page-title-main">Aphelida</span> Phylum of fungi

Aphelida is a phylum of Fungi that appears to be the sister to true fungi.

<span class="mw-page-title-main">Placidozoa</span> Group of non-photosynthetic organisms

Placidozoa is a recently defined non-photosynthetic lineage of Stramenopiles.

<span class="mw-page-title-main">Bigyromonada</span> Class of protists

Bigyromonada is a recently described non-photosynthetic lineage of stramenopiles that at present contains two classes.

Pirsonia is a non photosynthetic genus of heterokonts. It comprises the entirety of the family Pirsoniaceae, order Pirsoniida and class Pirsonea in the subphylum Bigyromonada, phylum Gyrista.

<span class="mw-page-title-main">Basidiobolomycetes</span> Class of fungi

Basidiobolomycetes is one of the currently recognized classes within the kingdom Fungi, and subdivision Basidiobolomycotina.

<span class="mw-page-title-main">Picophagea</span> Class of algae

Picophagea, also known as Synchromophyceae, is a class of photosynthetic stramenopiles. The chloroplast of the Synchromophyceae are surrounded by two membranes and arranged in a way where they share the outer pair of membranes. The entire chloroplast complex is surrounded by an additional two outer membranes.

<span class="mw-page-title-main">Gyrista</span> Phylum of eukaryotic organisms

Gyrista is a phylum of heterokont protists containing three diverse groups: the mostly photosynthetic Ochrophyta, the parasitic Pseudofungi, and the recently described group of nanoflagellates known as Bigyromonada. Members of this phylum are characterized by the presence of a helix or a double helix/ring system in the ciliary transition region.

References

  1. Ruggiero; et al. (2015), "Higher Level Classification of All Living Organisms", PLOS ONE, 10 (4): e0119248, Bibcode:2015PLoSO..1019248R, doi: 10.1371/journal.pone.0119248 , PMC   4418965 , PMID   25923521
  2. Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462
  3. Guiry, M.D.; Guiry, G.M. (2016). "Chrysomerophyceae". AlgaeBase (3). Retrieved 2016-08-26.