Dictyochales

Last updated

Silicoflagellates
Temporal range: 115–0  Ma
Dictyocha speculum.jpg
Dictyocha speculum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Class: Dictyochophyceae
Order: Dictyochales
Haeckel, 1894
Family: Dictyochaceae
Lemmermann, 1901
Genera
Synonyms [1]
  • Silicoflagellata Borgert, 1890
  • Dictyochida Borgert, 1891

The silicoflagellates (order Dictyochales) are a small group of unicellular photosynthetic protists, or algae, belonging to the supergroup of eukaryotes known as Stramenopiles. They behave as plankton and are present in oceanic waters. They are well-known from harmful algal blooms that cause high mortality of fish. Additionally, they compose a rich fossil record represented by their silica skeletons.

Contents

Morphology

Dictyocha fibula The silicoflagellate Dictyocha fibula.png
Dictyocha fibula

The silicoflagellates are unicellular protists, composed of cells with one emergent flagellum and a siliceous skeleton constructed from a network of hollow rods outside of the cytoplasm. The morphology of the skeleton can vary greatly, from a simple ring, an ellipse or triangle, to a more complex and complete arrangement of rods. For example, in Dictyocha fibula (pictured) the skeleton rods are arranged in a series of peripheral polygons surrounding a central hexagon. [2] These skeletons form a small component of marine sediments, and are well-known microfossils dating as far back as the early Cretaceous. [3]

The silicoflagellates are considered algae due to being photosynthetic. Their chloroplasts are usually present inside the numerous cytoplasmic processes that extend from the central mass of the cytoplasm, where the cell nucleus is located. There is a possibility that silicoflagellate chloroplasts are derived from haptophyte algae through tertiary endosymbiosis. [2]

Ecology

Silicoflagellates are photosynthetic microscopic algae present in the upper part of the marine water column, as plankton. They are adapted to both warm and cold waters. Similarly to diatoms, silicoflagellates are most productive where high levels of silica and nutrients are present in near-surface waters. They are known to cause harmful algal blooms, or red tides, in many parts of Europe. Blooms of silicoflagellates cause fish mortality because their silica skeletons obstruct and abrade fish gills, leading to asphyxiation and subsequent death. Additionally, some silicoflagellates are thought to produce ichthyotoxins, i.e. substances toxic to fish, although their effect is debated. Apart from physical damage to fish, the depletion of dissolved oxygen in water due to their cellular respiration during bloom growth has also caused fish mortality in fisheries and aquaculture. [4]

Systematics

Taxonomy

In biological classification, silicoflagellates compose the family Dictyochaceae (in botanical nomenclature) or Dictyochidae (in zoological nomenclature), contained within the order Dictyochales or Silicoflagellata. [1] [2] They were previously classified as Chrysophyceae (golden algae). [1] Through morphological and molecular similarities, this group was eventually transferred to the Dictyochophyceae, which contains three additional orders, Pedinellales, Florenciellales and Rhizochromulinales. [5] After decades of phylogenetic analyses, silicoflagellates and the rest of Dictyochophyceae are accepted as a class of the phylum Ochrophyta, within the eukaryotic supergroup Stramenopiles. [6]

Genera

There are four living genera: Dictyocha , Octactis , Stephanocha (earlier known as Distephanus, [7] homonymous with the flowering plant Distephanus ) [8] and Vicicitus , with 11 recognised living species. Dictyocha was previously the only member of the order, until Vicicitus was created for a species previously assigned to the raphidophyte Chattonella but later proven to be a Dictyochophyceae through phylogenetic analyses. [9] [10]

There are also several extinct genera, but their classification is difficult, since skeletons may show diverse forms within each living species. [12] [3]

Evolution

Proposed relationships among Cenozoic silicoflagellates

Cornua

62.0 Ma

Pseudonaviculopsis

Corbisema archangelskiana group

62.4 Ma
61.5 Ma
59.9 Ma

Corbisema tracantha group

Naviculopsis

37.8 Ma
37.1 Ma

Distephanopsis

18.4 Ma

Caryocha

13.0 Ma

Dictyocha

48.0 Ma

four-sided star-of-David double skeletons

Corbisema apiculata group

55.5 Ma 

Bachmannocena

Proposed evolutionary history for Cenozoic silicoflagellate genera based on their skeletal morphology, with estimated divergence ages in millions of years ago (Ma). The 4-sided fossils with star-of-David-shaped double skeletons presumably belong to the genus including Corbisema apiculata, while the 3-sided fossils currently placed in Corbisema are proposed to belong to multiple different genera not yet formally named. [13]

The fossil record of silicoflagellates extends back to early Albian times, in the Early Cretaceous, around 115 million years ago. However, data on Late Cretaceous and Paleocene silicoflagellate evolution is sparse, and they are best known from the Eocene to Recent era. [3] Silicoflagellate skeletons from the Cretaceous are markedly different from Cenozoic ones: before the Santonian (around 85 million years ago) they presented branched, non-ringed shapes. [13] During the Cenozoic, silicoflagellates show an evolutionary trend towards more complicated apical and basal structures, resulting in a design that resembles a hemisphere. As a consequence, after mitosis, the pair of daughter cell skeletons resembles a near-sphere. [13]

Related Research Articles

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Diatom</span> Class of microalgae, found in the oceans, waterways and soils of the world

A diatom is any member of a large group comprising several genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of the Earth's biomass: they generate about 20 to 50 percent of the oxygen produced on the planet each year, take in over 6.7 billion tonnes of silicon each year from the waters in which they live, and constitute nearly half of the organic material found in the oceans. The shells of dead diatoms can reach as much as a half-mile deep on the ocean floor, and the entire Amazon basin is fertilized annually by 27 million tons of diatom shell dust transported by transatlantic winds from the African Sahara, much of it from the Bodélé Depression, which was once made up of a system of fresh-water lakes.

<span class="mw-page-title-main">Synurid</span> Group of algae

The synurids are a small group of heterokont algae, found mostly in freshwater environments, characterized by cells covered in silica scales.

<span class="mw-page-title-main">Axodine</span> Class of single-celled organisms

The axodines are a group of unicellular stramenopiles that includes silicoflagellate and rhizochromulinid algae, actinomonad heterotrophic flagellates and actinophryid heliozoa. Alternative classifications treat the dictyochophytes as heterokont algae, or as Chrysophyceae. Other overlapping taxonomic concepts include the Actinochrysophyceae, Actinochrysea or Dictyochophyceae sensu lato. The grouping was proposed on the basis of ultrastructural similarities, and is consistent with subsequent molecular comparisons.

<span class="mw-page-title-main">Golden algae</span> Class of algae

The Chrysophyceae, usually called chrysophytes, chrysomonads, golden-brown algae or golden algae, are a large group of algae, found mostly in freshwater. Golden algae is also commonly used to refer to a single species, Prymnesium parvum, which causes fish kills.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

A resting spore is a resistant cell, used to survive adverse environmental conditions. Resting spore is a term commonly applied to both diatoms and fungi.

<i>Heterosigma akashiwo</i> Species of alga

Heterosigma akashiwo is a species of microscopic algae of the class Raphidophyceae. It is a swimming marine alga that episodically forms toxic surface aggregations known as harmful algal bloom. The species name akashiwo is from the Japanese for "red tide".

<span class="mw-page-title-main">Picoeukaryote</span> Picoplanktonic eukaryotic organisms 3.0 µm or less in size

Picoeukaryotes are picoplanktonic eukaryotic organisms 3.0 µm or less in size. They are distributed throughout the world's marine and freshwater ecosystems and constitute a significant contribution to autotrophic communities. Though the SI prefix pico- might imply an organism smaller than atomic size, the term was likely used to avoid confusion with existing size classifications of plankton.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

<i>Karenia</i> (dinoflagellate) Genus of single-celled organisms

Karenia is a genus that consists of unicellular, photosynthetic, planktonic organisms found in marine environments. The genus currently consists of 12 described species. They are best known for their dense toxic algal blooms and red tides that cause considerable ecological and economical damage; some Karenia species cause severe animal mortality. One species, Karenia brevis, is known to cause respiratory distress and neurotoxic shellfish poisoning (NSP) in humans.

<span class="mw-page-title-main">SAR supergroup</span> Eukaryotes superphylum

SAR or Harosa is a highly diverse clade of eukaryotes, often considered a supergroup, that includes stramenopiles (heterokonts), alveolates, and rhizarians. It is a node-based taxon, including all descendants of the three groups' last common ancestor, and comprises most of the now-rejected Chromalveolata. Their sister group has been found to be telonemids, with which they make up the TSAR clade.

<i>Dictyocha</i> Genus of unicellular algae

Dictyocha is a genus of silicoflagellates, marine photosynthetic unicellular protists that take the form of either flagellates or axopodial amoebae. Described by Ehrenberg in 1837, Dictyocha contains many important species of the marine phytoplankton, some of them responsible for algal blooms that are toxic to fish.

Chattonella is a genus of the marine class raphidophytes associated with red tides and can be found in the phylum Heterokontophyta in stramenopiles. These unicellular flagellates are found in brackish ecosystems. The genus Chattonella is composed of five species: C. subsalsa, C. antiqua, C. marina, C. minima, and C. ovata.

<i>Monas</i> (heterokont) Genus of algae

Monas is a genus of Chrysophyceae, described by Otto Friedrich Müller in 1773 as a group of Infusoria. Throughout time, it represented an aggregate genus.

<span class="mw-page-title-main">Nassellaria</span> Order of single-celled organisms

Nassellaria is an order of Rhizaria belonging to the class Radiolaria. The organisms of this order are characterized by a skeleton cross link with a cone or ring.

The genus Stylodictya belongs to a group of organisms called the Radiolaria. Radiolarians are amoeboid protists found as zooplankton in oceans around the world and are typically identified by their ornate skeletons.

<span class="mw-page-title-main">Protists in the fossil record</span>

A protist is any eukaryotic organism that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor, the last eukaryotic common ancestor, the exclusion of other eukaryotes means that protists do not form a natural group, or clade. Therefore, some protists may be more closely related to animals, plants, or fungi than they are to other protists. However, like algae, invertebrates and protozoans, the grouping is used for convenience.

<i>Karlodinium veneficum</i> Species of single-celled organism

Karlodinium veneficum is a species of dinoflagellates belonging to the family Kareniaceae. This species is predominantly inhabiting aquatic environments, particularly in temperate coastal regions.

<i>Octactis</i> Genus of unicellular protists

Octactis is a genus of silicoflagellates, marine photosynthetic unicellular protists that take the form of either flagellates or axopodial amoebae. Described by Josef Schiller in 1925, Octactis contains various species of marine phytoplankton, some of them responsible for algal blooms that are toxic to fish.

References

  1. 1 2 3 Moestrup, Øjvind; O'Kelly, Charles J. (2000). "Class Silicoflagellata Lemmermann, 1901" (PDF). In Lee, John J.; Leedale, Gordon F.; Bradbury, Phyllis (eds.). An Illustrated Guide to the Protozoa. Vol. II (2nd ed.). Lawrence, Kansas: Society of Protozoologists. pp. 775–782.
  2. 1 2 3 Lee, R.E. (2008). "14. Heterokontophyta: Dictyochophyceae". Phycology. Cambridge University Press. pp. 359–364. ISBN   978-1-139-46987-6.
  3. 1 2 3 4 5 McCartney, Kevin; Witkowski, Jakub; Hardwood, David M. (2014). "New insights into skeletal morphology of the oldest known silicoflagellates: Variramus, Cornua and Gleserocha gen. nov". Rvue de micropaléontologie. 57: 75–91. doi:10.1016/j.revmic.2014.05.001.
  4. Ajuzie, Cyril C.; Houvenaghel, Guy T. (2015). "A first record of extant silicoflagellates in coastal waters of Nigeria" (PDF). Nature and Science. 13 (3): 74–79.
  5. Edvardsen, Bente; Eikrem, Wenche; Shalchian-Tabrizi, Kamran; Riisberg, Ingvild; Johnsen, Geir; Naustvoll, Lars; Throndsen, Jahn (2007). "Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway". Journal of Phycology. 43. Phycological Society of America: 1054–1070. doi:10.1111/j.1529-8817.2007.00390.x. hdl: 10852/11590 .
  6. Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric; Brown, Matthew W.; Burki, Fabien; et al. (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1). Wiley Periodicals, Inc. on behalf of the International Society of Protistologists: 4–119. doi:10.1111/jeu.12691. PMC   6492006 . PMID   30257078.
  7. Malinverno, Elisa (2010). "Extant morphotypes of Distephanus speculum (Silicoflagellata) from the Australian sector of the Southern Ocean: Morphology, morphometry and biogeography". Marine Micropaleontology. 77: 154–174. doi:10.1016/j.marmicro.2010.09.002.
  8. 1 2 Jordan, Richard; McCartney, Kevin (2015). "Stephanocha nom. nov., a replacement name for the illegitimate silicoflagellate genus Distephanus (Dictyochophyceae)". Phytotaxa. 201 (3). doi:10.11646/phytotaxa.201.3.1.
  9. 1 2 Chang, F. Hoe; McVeagh, Margaret; Gall, Mark; Smith, Peter (2012). "Chattonella globosa is a member of Dictyochophyceae: reassignment to Vicicitus gen. nov., based on molecular phylogeny, pigment composition, morphology and life history". Phycologia. 51 (4): 403–420. doi:10.2216/10-104.1.
  10. 1 2 Chang, Fook Hoe; Sutherland, Judy; Bradford-Grieve, Janet (2017). "Taxonomic revision of Dictyochales (Dictyochophyceae) based on morphological, ultrastructural, biochemical and molecular data". Phycological Research. 65: 235–247. doi:10.1111/pre.12181.
  11. Hernández-Becerril DU, Bravo-Sierra E (2001). "Planktonic Silicoflagellates (Dictyochophyceae) from the Mexican Pacific Ocean". Botanica Marina. 44 (5): 417–423. doi:10.1515/BOT.2001.050.
  12. 1 2 3 4 5 McCartney, Kevin; Witkowski, Jakub; Harwood, David M. (2011). "Unusual assemblages of Late Cretaceous silicoflagellates from the Canadian Archipelago". Revue de micropaléontologie. 54 (1): 31–58. doi:10.1016/j.revmic.2010.08.002.
  13. 1 2 3 McCartney, Kevin; Witkowski, Jakub; Jordan, Richard W.; Abe, Kenta; Jauszkiewicz, Adrianna; Wróbel, Rafał; Bąk, Małgorzata; Soeding, Emanuel (2022). "Silicoflagellate evolution through the Cenozoic". Marine Micropaleontology. 172 (102108). doi:10.1016/j.marmicro.2022.102108.