Sagenista

Last updated

Sagenista
Aplanonet3.jpg
A labyrinthulid
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Bigyra
Subphylum: Sagenista
Cavalier- Smith, 1995 [1] stat. n. 2006
Groups

Sagenista is a group of heterokonts containing the labyrinthulids and Eogyrea, a class of yet uncultured protists. Originally, it contained the Labyrinthulids and bicosoecids. The bicosoecids have been removed, and Eogyrea were added, in order to make the group monophyletic. [2] [3] [4] [5]

Contents

Some have a special organelle called a bothrosome (or sagenogenetosome). It is usually found in a marine environments rich in algae and sea grass. It is capable of movement by use of this organelle.[ citation needed ]

They are generally decomposers. They are cultivated for their active production of Omega-3 fatty acids. These acids are used as an approved additive for animal feed.[ citation needed ]

There is a debate about whether some species of Sagenista contains the photosynthetic pigment chlorophyll C.[ citation needed ]

Bothrosome

They are capable of excreting an extoplasmic net of filaments for cells to glide upon. These tiny filaments provide a network for cells to travel upon to soak up nutrients from the surrounding environment.[ citation needed ]

Examples

Related Research Articles

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Axodine</span> Class of single-celled organisms

The axodines are a group of unicellular stramenopiles that includes silicoflagellate and rhizochromulinid algae, actinomonad heterotrophic flagellates and actinophryid heliozoa. Alternative classifications treat the dictyochophytes as heterokont algae, or as Chrysophyceae. Other overlapping taxonomic concepts include the Actinochrysophyceae, Actinochrysea or Dictyochophyceae sensu lato. The grouping was proposed on the basis of ultrastructural similarities, and is consistent with subsequent molecular comparisons.

<span class="mw-page-title-main">Labyrinthulomycetes</span> Class of protists that produce a filamentous network

Labyrinthulomycetes (ICBN) or Labyrinthulea (ICZN) is a class of protists that produce a network of filaments or tubes, which serve as tracks for the cells to glide along and absorb nutrients for them. The two main groups are the labyrinthulids and thraustochytrids. They are mostly marine, commonly found as parasites on algae and seagrasses or as decomposers on dead plant material. They also include some parasites of marine invertebrates and mixotrophic species that live in a symbiotic relationship with zoochlorella.

<i>Zostera</i> Genus of aquatic plants

Zostera is a small genus of widely distributed seagrasses, commonly called marine eelgrass, or simply seagrass or eelgrass, and also known as seaweed by some fishermen and recreational boaters including yachtsmen. The genus Zostera contains 15 species.

<span class="mw-page-title-main">Bicosoecida</span> Order of protists

Bicosoecida (ICZN) or Bicosoecales/Bicoecea (ICBN) is an order of Bikosea, a small group of unicellular flagellates, included among the stramenopiles. Informally known as bicosoecids, they are a small group of unicellular flagellates. The cells are free-living, with no chloroplasts, and in some genera are encased in a lorica.

<span class="mw-page-title-main">Raphidophyte</span> Group of aquatic algae

The raphidophytes, formally known as Raphidophycidae or Raphidophyceae, are a small group of eukaryotic algae that includes both marine and freshwater species. All raphidophytes are unicellular, with large cells, but no cell walls. Raphidophytes possess a pair of flagella, organised such that both originate from the same invagination. One flagellum points forwards, and is covered in hair-like mastigonemes, while the other points backwards across the cell surface, lying within a ventral groove. Raphidophytes contain numerous ellipsoid chloroplasts, which contain chlorophylls a, c1 and c2. They also make use of accessory pigments including β-carotene and diadinoxanthin. Unlike other heterokontophytes, raphidophytes do not possess the photoreceptive organelle typical of this group.

Lottia alveus, the eelgrass limpet or bowl limpet, was a species of sea snail or small limpet, a marine gastropod mollusk in the family Lottiidae, the Lottia limpets, a genus of true limpets. This species lived in the western Atlantic Ocean.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

<span class="mw-page-title-main">Bigyra</span> Phylum of single-celled organisms

Bigyra is a phylum of microscopic eukaryotes that are found at the base of the Stramenopiles clade. It includes three well-known heterotrophic groups Bicosoecida, Opalinata and Labyrinthulomycetes, as well as several small clades initially discovered through environmental DNA samples: Nanomonadea, Placididea, Opalomonadea and Eogyrea. The classification of Bigyra has changed several times since its origin, and its monophyly remains unresolved.

The genus Labyrinthula is part of the protist group Labyrinthulomycetes and contains thirteen species. The major feature of this genus is the formation of an ectoplasmic net secreted by specialized organelles called bothrosomes which surrounds the colony, which is also used by Labyrinthula for moving. The protist reproduces by zoosporulation as it sets some flagellated spores free from a sporangium. One of the flagella of the zoospores has stiff tripartite hairs (mastigonemes) - the defining characteristic of the stramenopiles.

<i>Zostera marina</i> Species of aquatic plant

Zostera marina is a flowering vascular plant species as one of many kinds of seagrass, with this species known primarily by the English name of eelgrass with seawrack much less used, and refers to the plant after breaking loose from the submerged wetland soil, and drifting free with ocean current and waves to a coast seashore. It is a saline soft-sediment submerged plant native to marine environments on the coastlines of northern latitudes from subtropical to subpolar regions of North America and Eurasia.

<i>Zostera noltii</i> Species of plant

Zostera noltii is a species of seagrass known by the common name dwarf eelgrass. It is found in shallow coastal waters in north western Europe, the Mediterranean Sea, Black Sea, Caspian Sea and Aral Sea and on islands in the Atlantic off the coast of northwest Africa. It is an important part of the intertidal and shallow subtidal ecosystems of estuaries, bays and lagoons.

<i>Zostera japonica</i> Species of plant

Zostera japonica is a species of aquatic plant in the Zosteraceae family. It is referred to by the common names dwarf eelgrass or Japanese eelgrass, and is native to the seacoast of eastern Asia from Russia to Vietnam, and introduced to the western coast of North America. It is found in the intertidal zone and the shallow subtidal, and grows on sandy, muddy and silty substrates.

<i>Aplanochytrium</i> Genus of single-celled organisms

The genus Aplanochytrium is part of the class Labyrinthulomycetes. It is a sister genus of Labyrinthula and thraustochytrids. The major characteristic of all three genera is the production of an extension of the plasma membrane and the ectoplasm called the ectoplasmic net, but its use is different in each genera. Aplanochytrium cells are not embedded in the ectoplasmic net but can move by gliding on the ectoplasmic threads.

Nanum is a genus of bicosoecids, a small group of unicellular flagellates, included among the heterokonts. It includes the sole species Nanum amicum, previously known as Nanos amicus but modified because the name Nanos was already occupied by a species of beetle.

Borokiae is a superorder of bicosoecids, a small group of unicellular flagellates, included among the heterokonts.

<span class="mw-page-title-main">Cyathobodoniae</span> Subclass of single-celled organisms

Cyathobodoniae is a subclass of bicosoecids, a small group of unicellular flagellates, included among the heterokonts.

Pseudodendromonadida is a subclass of bicosoecids, a small group of unicellular flagellates, included among the heterokonts.

<span class="mw-page-title-main">Gyrista</span> Phylum of eukaryotic organisms

Gyrista is a phylum of heterokont protists containing three diverse groups: the mostly photosynthetic Ochrophyta, the parasitic Pseudofungi, and the recently described group of nanoflagellates known as Bigyromonada. Members of this phylum are characterized by the presence of a helix or a double helix/ring system in the ciliary transition region.

References

  1. Cavalier-Smith, T. (1995). Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai, R., Kato, M., Doi, Y. (eds). Biodiversity and evolution. The National Science Museum Foundation. Tokyo, pp 75-114.
  2. "Browse taxonomic tree". Catalogue of Life : 2008 Annual Checklist.
  3. Cavalier-Smith, T.; Chao, Ema E.-Y. (2006). "Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista)". Journal of Molecular Evolution. 62 (4): 388–420. Bibcode:2006JMolE..62..388C. doi:10.1007/s00239-004-0353-8. PMID   16557340. S2CID   29567514.
  4. Baldauf, Sandra L. (2008). "An overview of the phylogeny and diversity of eukaryotes" (PDF). Journal of Systematics and Evolution. 46 (3): 263–273. doi:10.3724/SP.J.1002.2008.08060 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  5. Cavalier-Smith, T.; Scoble, J. M. (2013). "Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes". European Journal of Protistology. 49 (3): 328–353. doi:10.1016/j.ejop.2012.09.002. PMID   23219323.
  6. Muehlstein, Lisa K.; Porter, David; Short, Frederick T. (1 January 1991). "Labyrinthula zosterae sp. nov., the Causative Agent of Wasting Disease of Eelgrass, Zostera marina". Mycologia. 83 (2): 180–191. doi:10.2307/3759933. JSTOR   3759933.
  7. Ralph & Short 2002.

Bibliography