Gunflint chert

Last updated
Gunflint chert
Stratigraphic range: 1.88 Ga [1]
Microfossils of microbes similar to cyanobacteria, Gunflint Formation, north shore of Lake Superior, 1.9 billion years old, chert - Redpath Museum - McGill University - Montreal, Canada - DSC07897.jpg
Microfossils of microbes similar to cyanobacteria, Gunflint Formation, north shore of Lake Superior, 1.9 billion years old
Type Geological formation
Lithology
Primary Banded iron formation
Location
RegionFlag of Minnesota.svg  Minnesota
Flag of Ontario.svg  Ontario
Type section
Named for Gunflint Range

The Gunflint chert (1.88 Ga [1] ) is a sequence of banded iron formation rocks that are exposed in the Gunflint Range of northern Minnesota and northwestern Ontario along the north shore of Lake Superior. The Gunflint Chert is of paleontological significance, as it contains evidence of microbial life from the Paleoproterozoic. [2] The Gunflint Chert is composed of biogenic stromatolites. [3] At the time of its discovery in the 1950s, it was the earliest form of life discovered and described in scientific literature, as well as the earliest evidence for photosynthesis. [4] The black layers in the sequence contain microfossils that are 1.9 to 2.3 billion years in age. Stromatolite colonies of cyanobacteria that have converted to jasper are found in Ontario. The banded ironstone formation consists of alternating strata of iron oxide-rich layers interbedded with silica-rich zones. The iron oxides are typically hematite or magnetite with ilmenite, while the silicates are predominantly cryptocrystalline quartz as chert or jasper, along with some minor silicate minerals.

Contents

The Gunflint Iron Formation (exposed as the Gunflint Range) spans northwestern Ontario and northern Minnesota along the shores of Lake Superior. The type locality of the Gunflint Iron Formation is at Schreiber, ON near Lake Superior’s Thunder Bay. [5]

Geologist Stanley A. Tyler first examined the area in 1953 and noticed its red-colored stromatolites. He also sampled a jet-black chert layer which, when observed petrographically, revealed some lifelike small spheres, rods and filaments less than 10 micrometres in size. Elso Barghoorn, a paleobotanist at Harvard, subsequently looked at these same samples and concluded that "they were indeed structurally preserved unicellular organisms." [6] In 1965 the two scientists published their landmark finding and named the first variety of Gunflint flora. [2] This created an academic "stampede" to explore Precambrian microfossils from similar Proterozoic environments. While older microfossils have since been described, the Gunflint microfauna is a historic geologic discovery and remains one of the most robust and diverse microfaunal fossil assemblages from the Precambrian.

Stratigraphy

The Gunflint Iron Formation is a banded iron formation, composed predominantly of dense chert and slate layers interbedded with ankerite carbonate layers. The chert layers can be subdivided into black layers (containing organic material and pyrite), red layers (containing hematite), and green layers (containing siderite). [5] The Gunflint Iron Formation belongs to the Animike Group and can be broken up into four stratigraphic sections, the Lower Cherty, Lower Slaty, Upper Cherty, and Upper Slaty sections. [7] Microfossils can be found in the stromatolitic chert layers, consisting of cyanobacteria, algal filaments, spore-like spheroids, and organic-rich ooids.

History

Geologist Stanley A. Tyler first examined the Gunflint Range in 1953 and observed red iron banded formations and black chert, noting probable stromatolites, though he would not go on to publish his observations for another decade. A. M. Goodwin later examined the geologic facies of the Gunflint Iron Formation in 1956, resulting in one of the first science publications on the region, [5] but his report is devoid of any mention of microscopic life. The first publications noting the geobiological significance of the Gunflint Chert came in 1965 when two scientific papers highlighting the Gunflint microfauna were published in the preeminent journal Science. These papers were Stanley Tyler and Elso Barghoorn's ‘Microorganisms from the Gunflint Chert’ [2] and Preston Cloud’s (University of California at Santa Barbara) ‘Significance of the Gunflint (Precambrian) Microflora’. [4] While published at nearly the same time, both papers served as landmark publications introducing the idea of life occurring during the Precambrian. Each paper had markedly different foci: while Barghoorn and Tyler aimed to characterize the individual microorganisms that comprise the Gunflint chert from a taxonomical and morphological standpoint, Cloud focused on the larger-scale significance of the prospect of life existing during the Precambrian period and its implications for the field of Precambrian paleontology. The publication of these two seminal papers opened the floodgates to a vast array of paleontological and geochemical studies to explore Precambrian microfossils from similar Proterozoic environments.

Age

The Gunflint chert microfauna is mid- to late-Paleoproterozoic in age (approximately 1.878 Ga ± 1.3 Ma, as determined by Uranium-Lead dating techniques). [1] This age has fluctuated as dating techniques have become more accurate and precise. Initial whole-rock Rubidium-Strontium and Potassium-Argon dating placed the age of the Gunflint Iron Formation at 1.56-163 Ga. [8] [9] [10] [11] Whole-rock Neodymium-Samarium dating later placed the age between 2.08 and 2.11 Ga. [12] [13] Finally, dating of interbedded ash layers within the Gunflint Iron Formation yielded ages between 1.86 and 1.99 Ga, [14] which are most similar to the current consensus age of 1.878 Ga ± 1.3 Ma. At the time of discovery of the Gunflint Chert, the oldest evidence of life known was the Ediacaran fauna (635-541 Ma), [15] a late Precambrian assemblage less than half the age of the Gunflint microorganisms.

Microfaunal diversity

The most abundant organisms in Gunflint are filaments found in stromatolitic fabrics, and typically range from 0.5-6.0 μm in diameter and up to several hundred microns in length. [3] The Gunflint microfauna can be split into two broad categories: filaments and spheroids. In the groundbreaking 1965 Barghoorn and Tyler paper, three new genera and four new species of filamentous cyanobacteria were discovered from Gunflint chert. [2] Since then various new genera and species have been identified, some named after Barghoorn, Tyler, and Cloud in acknowledgement of their early contributions in defining the Gunflint microbial assemblages. [3] [7] [16] [17]  

Filamentous microorganisms

Filamentous microorganisms within the Gunflint Chert represent a mixed population of photosynthetic cyanobacteria and iron oxidizing bacteria. On the outcrop scale, the filamentous Gunflint cyanobacteria form meter-scale stromatolitic domes, which are discernible along the Gunflint Iron Formation stratigraphic section. Examples of newly identified filamentous genera and species within the Gunflint Chert include the genus Gunflintia and the species Animikieaseptate, Entosphaeroides amplus, and Archaeorestis schreiberensis. [2]

Spheroidal microorganisms

Spheroidal spore-like bodies within the Gunflint Chert are found irregularly distributed throughout the Gunflint Iron Formation, and range from 1 to 16 μm in diameter. The spheroidal bodies range from spherical to ellipsoidal in morphology. They are typically encased in a membrane which can vary in wall thickness and morphology. The spheroidal bodies have been hypothesized to be various things, such as unicellular cyanobacteria, endogenously produced endospores of bacterial origin, free-swimming dinoflagellates, and fungus spores. [2] Examples of newly identified spheroidal genera and species within the Gunflint Chert include the genera Huroniospora and Eoasatrion, as well as the species Eosphaera tyleri. [3] [17]

Preservation of microfauna

Various predominant taphonomic models have been suggested as mechanisms for the exceptional preservation of the Gunflint Chert microfauna. Examples of these taphonomic models include organic residue preservation, fine-grain pyritization, coarse-grain pyritization, carbonate association, and hematite preservation. [2] In organic residue preservation, a film of light-to-dark brown organic material outlines microorganisms, acting as a stain and preserving filaments, spore-like bodies, and carbonate rhombs within chert. Fine-grain pyritization is the most common type of preservation in the Gunflint Cherts, in which association of fine-grained (micrometer scale) pyrite with organic matter preserves the morphology of filamentous and spheroidal microorganisms. [18] Coarse-grained pyritization occurs when millimeter scale pyrite minerals replace organic matter in cherts, preserving microorganism morphology. In carbonate association, filaments, spore-like bodies, and other organic structures can be preserved by carbonate mineralization (<1μm in diameter) imbedded in a chert matrix. [18] Carbonate minerals can form as continuous bodies or as a series of lenses outlining filamentous cyanobacterial remains. Carbonate mineralization is often seen trailing pyrite crystals. Hematite preservation is a less common taphonomic mode, but is occasionally found at the interface between black stromatolitic cherts and red jasper. In this preservational method, hematite filaments <1μm in diameter encase (and occasionally replace) filamentous fossils, and are often outlined by carbonaceous films and pyrite grains. [16] As a result of the remarkable preservation of microorganisms given the taphonomic modes described above, the Gunflint Chert is sometimes described as the first Precambrian lagerstätte, or exceptionally preserved fossil assemblage. [19]

Significance and paleoenvironmental implications

In the 1950s and 1960s, the state of the Precambrian atmosphere was not well characterized. The discovery of the Gunflint microbiota revealed that photosynthesis (or an ancient autotrophic precursor modality) was occurring 1.8 billion years ago, and that the atmosphere was oxygenated enough to sustain microbial life. [4] The mineralogy of the Gunflint banded iron formation reveals a complex relationship between these redox conditions throughout the Gunflint Formation. [4] Multiple iron species in the Gunflint formation provides evidence for a highly oxidative atmosphere, with some localized reducing conditions which allowed for the transport of large quantities of iron in a soluble ferrous state. [4]

While the Gunflint microfauna no longer represents the oldest life discovered on Earth, at the time of discovery it pushed back the presumptive age of photosynthesis and the origin of life boundary by over one billion years. This discovery spurred generations of paleontologists and geomicrobiologists to contemplate ancient atmospheric oxygen conditions and redox states, and to continue searching for older microbial life.

See also

Related Research Articles

<span class="mw-page-title-main">Banded iron formation</span> Distinctive layered units of iron-rich sedimentary rock that are almost always of Precambrian age

Banded iron formations are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness and extend laterally for several hundred kilometers. Almost all of these formations are of Precambrian age and are thought to record the oxygenation of the Earth's oceans. Some of the Earth's oldest rock formations, which formed about 3,700 million years ago (Ma), are associated with banded iron formations.

<span class="mw-page-title-main">Stromatolite</span> Layered sedimentary structure formed by the growth of bacteria or algae

Stromatolites or stromatoliths are layered sedimentary formations (microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota. These microorganisms produce adhesive compounds that cement sand and other rocky materials to form mineral "microbial mats". In turn, these mats build up layer by layer, growing gradually over time. A stromatolite may grow to a meter or more. Fossilized stromatolites provide important records of some of the most ancient life. As of the Holocene, living forms are rare.

<span class="mw-page-title-main">Chert</span> Hard, fine-grained sedimentary rock composed of cryptocrystalline silica

Chert is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a chemical precipitate or a diagenetic replacement, as in petrified wood.

<span class="mw-page-title-main">Concretion</span> Compact mass formed by precipitation of mineral cement between particles

A concretion is a hard, compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word 'concretion' is derived from the Latin concretio "(act of) compacting, condensing, congealing, uniting", itself from con meaning 'together' and crescere meaning "to grow". Concretions form within layers of sedimentary strata that have already been deposited. They usually form early in the burial history of the sediment, before the rest of the sediment is hardened into rock. This concretionary cement often makes the concretion harder and more resistant to weathering than the host stratum.

<span class="mw-page-title-main">Gunflint Range</span> Iron ore deposit in Minnesota, United States and Ontario, Canada

The Gunflint Range is an iron ore deposit in northern Minnesota in the United States and Northwestern Ontario, Canada. The range extends from the extreme northern portion of Cook County, Minnesota into the Thunder Bay District, Ontario.

<span class="mw-page-title-main">Cuyuna Range</span> Iron mining range in northern Minnesota

The Cuyuna Range is an inactive iron range to the southwest of the Mesabi Range, largely within Crow Wing County, Minnesota. It lies along a 68-mile-long (109 km) line between Brainerd, Minnesota, and Aitkin, Minnesota. The width ranges from 1 to 10 miles.

<span class="mw-page-title-main">Great Oxidation Event</span> Paleoproterozoic surge in atmospheric oxygen

The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, was a time interval during the Early Earth's Paleoproterozoic Era when the Earth's atmosphere and the shallow ocean first experienced a rise in the concentration of oxygen. This began approximately 2.460–2.426 Ga (billion years) ago, during the Siderian period, and ended approximately 2.060 Ga, during the Rhyacian. Geological, isotopic, and chemical evidence suggests that biologically-produced molecular oxygen (dioxygen or O2) started to accumulate in Earth's atmosphere and changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of their present atmospheric level by the end of the GOE.

<span class="mw-page-title-main">Pilbara Craton</span> Old and stable part of the continental lithosphere located in Pilbara, Western Australia

The Pilbara Craton is an old and stable part of the continental lithosphere located in the Pilbara region of Western Australia.

Elso Sterrenberg Barghoorn was an American paleobotanist, called by his student Andrew Knoll, the present Fisher Professor of Natural History at Harvard, "the father of Pre-Cambrian palaeontology."

<span class="mw-page-title-main">Bitter Springs Group</span>

Bitter Springs Group is a Precambrian fossil locality in Australia, which preserves microorganisms in silica. Its preservational mode ceased in the late Precambrian with the advent of silicifying organisms.

<span class="mw-page-title-main">Permineralization</span> Type of fossilization

Permineralization is a process of fossilization of bones and tissues in which mineral deposits form internal casts of organisms. Carried by water, these minerals fill the spaces within organic tissue. Because of the nature of the casts, permineralization is particularly useful in studies of the internal structures of organisms, usually of plants.

Kakabekia is a genus of microorganism. Kakabekia umbellata was first found in the 1.88 billion year old Gunflint Chert, and in 1966, a living member of the genus, Kakabekia barghoorniana was discovered in Wales - it is also found around the world, typically at 1000-2000m elevations. The roughly 2 billion year interval between these species has led some to call it the “oldest living fossil”.

<span class="mw-page-title-main">Animikie Group</span> North American geologic group

The Animikie Group is a geologic group composed of sedimentary and metasedimentary rock, having been originally deposited between 2,500 and 1,800 million years ago during the Paleoproterozoic era, within the Animikie Basin. This group of formations is geographically divided into the Gunflint Range, the Mesabi and Vermilion ranges, and the Cuyuna Range. On the map, the Animikie Group is the dark gray northeast-trending belt which ranges from south-central Minnesota, U.S., up to Thunder Bay, Ontario, Canada. The Gunflint Iron Range is the linear black formation labeled G, the Mesabi Iron Range is the jagged black linear formation labeled F, and Cuyuna Iron Range is the two black spots labeled E. The gabbro of the Duluth Complex, intruded during the formation of the Midcontinent Rift, separates the Mesabi and Gunflint iron ranges; it is shown by the speckled area wrapping around the western end of Lake Superior.

<span class="mw-page-title-main">Iron-rich sedimentary rocks</span> Sedimentary rocks containing 15 wt.% or more iron

Iron-rich sedimentary rocks are sedimentary rocks which contain 15 wt.% or more iron. However, most sedimentary rocks contain iron in varying degrees. The majority of these rocks were deposited during specific geologic time periods: The Precambrian, the early Paleozoic, and the middle to late Mesozoic. Overall, they make up a very small portion of the total sedimentary record.

<span class="mw-page-title-main">Archean life in the Barberton Greenstone Belt</span> Some of the most widely accepted fossil evidence for Archean life

The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.

James William Schopf is an American paleobiologist and professor of earth sciences at the University of California Los Angeles. He is also Director of the Center for the Study of Evolution and the Origin of Life, and a member of the Department of Earth and Space Sciences, the Institute of Geophysics and Planetary Physics, and the Molecular Biology Institute at UCLA. He is most well known for his study of Precambrian prokaryotic life in Australia's Apex chert. Schopf has published extensively in the peer reviewed literature about the origins of life on Earth. He is the first to discover Precambrian microfossils in stromatolitic sediments of Australia (1965), South Africa (1966), Russia (1977), India (1978), and China (1984). He served as NASA's principal investigator of lunar samples during 1969–1974.

Stanley Awramik is an American biogeologist and paleontologist. He is best known for his work related to the Precambrian. In 2013, he was inducted as a fellow of the Geological Society of America.

<span class="mw-page-title-main">Microbialite</span>

Microbialite is a benthic sedimentary deposit made of carbonate mud that is formed with the mediation of microbes. The constituent carbonate mud is a type of automicrite ; therefore, it precipitates in situ instead of being transported and deposited. Being formed in situ, a microbialite can be seen as a type of boundstone where reef builders are microbes, and precipitation of carbonate is biotically induced instead of forming tests, shells or skeletons.

The Dresser Formation is a Paleoarchean geologic formation that outcrops as a generally circular ring of hills the North Pole Dome area of the East Pilbara Terrane of the Pilbara Craton of Western Australia. This formation is one of many formations that comprise the Warrawoona Group, which is the lowermost of four groups that comprise the Pilbara Supergroup. The Dresser Formation is part of the Panorama greenstone belt that surrounds and outcrops around the intrusive North Pole Monzogranite. Dresser Formation consists of metamorphosed, blue, black, and white bedded chert; pillow basalt; carbonate rocks; minor felsic volcaniclastic sandstone and conglomerate; hydrothermal barite; evaporites; and stromatolites. The lowermost of three stratigraphic units that comprise the Dresser Formation contains some of the Earth's earliest commonly accepted evidence of life such as morphologically diverse stromatolites, microbially induced sedimentary structures, putative organic microfossils, and biologically fractionated carbon and sulfur isotopic data.

The Allamoore Formation is a Precambrian geologic formation found in the vicinity of Van Horn, Texas. The formation is notable for the well-preserved microfossils found in chert beds within the formation. These may include early eukaryotes. Possible fossil burrows were reported in the formation in 1995, which would push the origin of the first animals (Metazoa) back to before 1000 million years ago. However, these have since been explained as diagenetic structures, formed by nonbiological processes as the sediments making up the formation were compacted and lithified.

References

  1. 1 2 3 Fralick, P., David, D. W. and Kissin, Stephen A. (2002). "The age of the Gunflint Formation, Ontario, Canada: single zircon U–Pb age determinations". Canadian Journal of Earth Sciences. 39 (7): 1085–1091. doi:10.1139/E02-028.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 3 4 5 6 7 Barghoorn, E. S. and Tyler, S. A., 1965: Microorganisms from the Gunflint Chert. Science, vol. 147, p. 563–577.
  3. 1 2 3 4 Awramik, Stanley M.; Barghoorn, Elso S. (August 1977). "The Gunflint microbiota". Precambrian Research. 5 (2): 121–142. Bibcode:1977PreR....5..121A. doi:10.1016/0301-9268(77)90025-0. ISSN   0301-9268.
  4. 1 2 3 4 5 Cloud, P. E. (1965-04-02). "Significance of the Gunflint (Precambrian) Microflora: Photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas". Science. 148 (3666): 27–35. doi:10.1126/science.148.3666.27. ISSN   0036-8075. PMID   17773767. S2CID   37713079.
  5. 1 2 3 Goodwin, Alan Murray (1956-09-01). "Facies relations in the Gunflint iron formation [Ontario]". Economic Geology. 51 (6): 565–595. doi:10.2113/gsecongeo.51.6.565. ISSN   1554-0774.
  6. Past lives: Chronicles of Canadian Paleontology "GSC :: Past lives: Chronicles of Canadian Paleontology - 5. Gunflint Chert". Archived from the original on 2005-06-12. Retrieved 2005-06-12.
  7. 1 2 Planavsky, Noah; Rouxel, Olivier; Bekker, Andrey; Shapiro, Russell; Fralick, Phil; Knudsen, Andrew (August 2009). "Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans". Earth and Planetary Science Letters. 286 (1–2): 230–242. Bibcode:2009E&PSL.286..230P. doi:10.1016/j.epsl.2009.06.033. ISSN   0012-821X.
  8. Hurley, P. M.; Fairbairn, H. W.; Pinson, W. H.; Hower, J. (July 1962). "Unmetamorphosed Minerals in the Gunflint Formation Used to Test the Age of the Animikie". The Journal of Geology. 70 (4): 489–492. Bibcode:1962JG.....70..489H. doi:10.1086/626839. ISSN   0022-1376. S2CID   140697996.
  9. PETERMAN, ZELL E. (1966). "Rb-Sr Dating of Middle Precambrian Metasedimentary Rocks of Minnesota". Geological Society of America Bulletin. 77 (10): 1031. Bibcode:1966GSAB...77.1031P. doi:10.1130/0016-7606(1966)77[1031:rdompm]2.0.co;2. ISSN   0016-7606.
  10. FAURE, GUNTER; KOVACH, JACK (1969). "The Age of the Gunflint Iron Formation of the Animikie Series in Ontario, Canada". Geological Society of America Bulletin. 80 (9): 1725. Bibcode:1969GSAB...80.1725F. doi:10.1130/0016-7606(1969)80[1725:taotgi]2.0.co;2. ISSN   0016-7606.
  11. Franklin, J M (1978). "Uranium mineralization in the Nipigon area, Thunder Bay District, Ontario". doi:10.4095/103901.{{cite journal}}: Cite journal requires |journal= (help)
  12. Stille, P; Clauer, N (June 1986). "Sm-Nd isochron-age and provenance of the argillites of the Gunflint Iron Formation in Ontario, Canada". Geochimica et Cosmochimica Acta. 50 (6): 1141–1146. Bibcode:1986GeCoA..50.1141S. doi:10.1016/0016-7037(86)90395-9. ISSN   0016-7037.
  13. Kröner, Alfred (1988). "Proterozoic Lithospheric Evolution". Eos, Transactions American Geophysical Union. 69 (16): 244–246. Bibcode:1988EOSTr..69..244K. doi:10.1029/88eo00138. ISSN   0096-3941.
  14. Hemming, S. R.; McLennan, S. M.; Hanson, G. N. (March 1995). "Geochemical and Nd/Pb Isotopic Evidence for the Provenance of the Early Proterozoic Virginia Formation, Minnesota. Implications for the Tectonic Setting of the Animikie Basin". The Journal of Geology. 103 (2): 147–168. Bibcode:1995JG....103..147H. doi:10.1086/629733. ISSN   0022-1376. S2CID   129538570.
  15. GLAESSNER, MARTIN F. (1971). "Geographic Distribution and Time Range of the Ediacara Precambrian Fauna". Geological Society of America Bulletin. 82 (2): 509. Bibcode:1971GSAB...82..509G. doi:10.1130/0016-7606(1971)82[509:gdatro]2.0.co;2. ISSN   0016-7606.
  16. 1 2 Shapiro, R. S.; Konhauser, K. O. (2015-02-02). "Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?". Geobiology. 13 (3): 209–224. doi:10.1111/gbi.12127. ISSN   1472-4677. PMID   25639940. S2CID   205140142.
  17. 1 2 Kaźmierczak, J. (June 1979). "The eukaryotic nature of Eosphaera-like ferriferous structures from the Precambrian Gunflint Iron Formation, Canada: A comparative study". Precambrian Research. 9 (1–2): 1–22. Bibcode:1979PreR....9....1K. doi:10.1016/0301-9268(79)90048-2. ISSN   0301-9268.
  18. 1 2 Wacey, D.; McLoughlin, N.; Kilburn, M. R.; Saunders, M.; Cliff, J. B.; Kong, C.; Barley, M. E.; Brasier, M. D. (2013-04-29). "Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the 1.9-Ga Gunflint chert". Proceedings of the National Academy of Sciences. 110 (20): 8020–8024. Bibcode:2013PNAS..110.8020W. doi: 10.1073/pnas.1221965110 . ISSN   0027-8424. PMC   3657779 . PMID   23630257.
  19. Palmer, Douglas (2008-06-24). "J. R. Nudds & P. A. Selden 2008. Fossil Ecosystems of North America. A Guide to the Sites and Their Extraordinary Biotas. 288 pp. London: Manson Publishing (published in the USA by University of Chicago Press). £24.95 (paperback). ISBN 9781 84076 088 0". Geological Magazine. 145 (4): 598–599. Bibcode:2008GeoM..145..598P. doi:10.1017/s0016756808004718. ISSN   0016-7568.