Difenacoum

Last updated
Difenacoum
Diphenacoum structure.svg
Names
Preferred IUPAC name
3-[3-([1,1′-Biphenyl]-4-yl)-1,2,3,4-tetrahydronapthalen-1-yl]-4-hydroxy-2H-1-benzopyran-2-one
Other names
Diphenacoum
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.054.508 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C31H24O3/c32-30-26-12-6-7-13-28(26)34-31(33)29(30)27-19-24(18-23-10-4-5-11-25(23)27)22-16-14-21(15-17-22)20-8-2-1-3-9-20/h1-17,24,27,32H,18-19H2 X mark.svgN
    Key: FVQITOLOYMWVFU-UHFFFAOYSA-N X mark.svgN
  • O=c1c(C2CC(c3ccc(-c4ccccc4)cc3)Cc3ccccc32)c(O)oc2ccccc12
Properties
C31H24O3
Molar mass 444.52 g/mol
Density 1.27 (98.7% w/w)
Melting point 211.0 to 215.0 °C (411.8 to 419.0 °F; 484.1 to 488.1 K) (98.7% wlw)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Professional bitebox containing difenacoum et al. Ratpoison Bait Box.JPG
Professional bitebox containing difenacoum et al.

Difenacoum is an anticoagulant of the 4-hydroxycoumarin vitamin K antagonist type. It has anticoagulant effects and is used commercially as a rodenticide. It was first introduced in 1976 and first registered in the USA in 2007. [1]

Contents

Formulation

Difenacoum is sold as blue-green and red pellets.

Uses

Difenacoum was first introduced in 1976 as a rodenticide effective against rats and mice which were resistant to other anticoagulants. [2]

Safety treatment and toxicity

Because other species of mammals and birds may prey upon affected rodents, or directly ingest rodenticide bait, there is a risk of primary, secondary or tertiary exposure; examples are described in a 2012 publication on veterinary toxicology. [3] Using radiolabeled isotopes, difenacoum (and/or its metabolites) has been shown to be distributed across many organ tissues upon oral ingestion, with the highest concentrations occurring in the liver and pancreas.

Difenacoum has been shown to be highly toxic to some species of freshwater fish and green algae despite the fact that difenacoum is weakly soluble in aqueous solutions.

Diagnosis Symptoms and Treatment
[4] Vitamin K deficiency in animals is deliberately brought about by anticoagulant rodenticide toxicities. Vitamin K deficiency causes internal bleeding and hemorrhaging, resulting in a slow, painful death. Other vitamin K deficient states include: biliary obstruction, intrahepatic cholestasis, intestinal malabsorption and chronic oral antibiotic administration. These are objectives of these poisons, as the sick animal normally stays in its nest, removing the need to clean up/dispose of dead animals. Often the target animals will remain healthy enough to feed several times and possibly bring poisoned foods back to feed their young. The poison is effectively transferred through milk of mothers to nursing mammalian infants.


Treatment: Vitamin K reverses the anticoagulant effect of rodenticides over a period of 24 to 48 hours from initiation of therapy. Caught early enough, Vitamin K can be rapidly administered by subcutaneous injection and followed up with by food-based supplements. [5]

Related Research Articles

<span class="mw-page-title-main">Amygdalin</span> Cyanogenic glycoside present in kernels of fruit

Amygdalin is a naturally occurring chemical compound found in many plants, most notably in the seeds (kernels) of apricots, bitter almonds, apples, peaches, cherries and plums, and in the roots of manioc.

<span class="mw-page-title-main">Vitamin K</span> Fat-soluble vitamers

Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.

<span class="mw-page-title-main">Warfarin</span> Medication

Warfarin is an anticoagulant used as a medication under several brand names including Coumadin. While the drug is described as a "blood thinner", it does not reduce viscosity but rather inhibits coagulation. Accordingly, it is commonly used to prevent blood clots in the circulatory system such as deep vein thrombosis and pulmonary embolism, and to protect against stroke in people who have atrial fibrillation, valvular heart disease, or artificial heart valves. Less commonly, it is used following ST-segment elevation myocardial infarction and orthopedic surgery. It is usually taken by mouth, but may also be administered intravenously.

<span class="mw-page-title-main">Cholecalciferol</span> Vitamin D3, a chemical compound

Cholecalciferol, also known as vitamin D3 and colecalciferol, is a type of vitamin D that is made by the skin when exposed to sunlight; it is found in some foods and can be taken as a dietary supplement.

<span class="mw-page-title-main">Rodenticide</span> Chemical used to kill rodents

Rodenticides are chemicals made and sold for the purpose of killing rodents. While commonly referred to as "rat poison", rodenticides are also used to kill mice, squirrels, woodchucks, chipmunks, porcupines, nutria, beavers, and voles. Despite the crucial roles that rodents play in nature, there are times when they need to be controlled.

<span class="mw-page-title-main">Sodium fluoroacetate</span> Chemical compound

Sodium fluoroacetate, also known as compound 1080, is an organofluorine chemical compound with the formula FCH2CO2Na. This colourless salt has a taste similar to that of sodium chloride and is used as a rodenticide.

<span class="mw-page-title-main">Bromethalin</span> Chemical compound

Bromethalin is a neurotoxic rodenticide that damages the central nervous system.

<span class="mw-page-title-main">Dog health</span> Health of dogs

The health of dogs is a well studied area in veterinary medicine.

<span class="mw-page-title-main">Coumatetralyl</span> Chemical compound

Coumatetralyl is an anticoagulant of the 4-hydroxycoumarin vitamin K antagonist type used as a rodenticide.

<span class="mw-page-title-main">4-Hydroxycoumarins</span>

4-Hydroxycoumarins are a class of vitamin K antagonist (VKA) anticoagulant drug molecules derived from coumarin by adding a hydroxy group at the 4 position to obtain 4-hydroxycoumarin, then adding a large aromatic substituent at the 3-position. The large 3-position substituent is required for anticoagulant activity.

<span class="mw-page-title-main">Brodifacoum</span> Chemical compound

Brodifacoum is a highly lethal 4-hydroxycoumarin vitamin K antagonist anticoagulant poison. In recent years, it has become one of the world's most widely used pesticides. It is typically used as a rodenticide, but is also used to control larger pests such as possums.

<span class="mw-page-title-main">Hydroxocobalamin</span> Form of vitamin B12

Hydroxocobalamin, also known as vitamin B12a and hydroxycobalamin, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to treat vitamin B12 deficiency including pernicious anemia. Other uses include treatment for cyanide poisoning, Leber's optic atrophy, and toxic amblyopia. It is given by injection into a muscle or vein.

<span class="mw-page-title-main">Diphenadione</span> Chemical compound

Diphenadione is a vitamin K antagonist that has anticoagulant effects and is used as a rodenticide against rats, mice, voles, ground squirrels and other rodents. The chemical compound is an anti-coagulant with active half-life longer than warfarin and other synthetic 1,3-indandione anticoagulants.

<span class="mw-page-title-main">Bromadiolone</span> Chemical compound

Bromadiolone is a potent anticoagulant rodenticide. It is a second-generation 4-hydroxycoumarin derivative and vitamin K antagonist, often called a "super-warfarin" for its added potency and tendency to accumulate in the liver of the poisoned organism. When first introduced to the UK market in 1980, it was effective against rodent populations that had become resistant to first generation anticoagulants.

<span class="mw-page-title-main">Cat health</span> Health of domestic cats

The health of domestic cats is a well studied area in veterinary medicine.

Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur after drinking even in a small amount as ethylene glycol is more toxic than other diols.

<span class="mw-page-title-main">Vitamin K antagonist</span>

Vitamin K antagonists (VKA) are a group of substances that reduce blood clotting by reducing the action of vitamin K. The term "vitamin K antagonist" is technically a misnomer, as the drugs do not directly antagonize the action of vitamin K in the pharmacological sense, but rather the recycling of vitamin K. Vitamin K antagonists (VKAs) have been the mainstay of anticoagulation therapy for more than 50 years.

α-Naphthylthiourea Chemical compound

α-Naphthylthiourea (ANTU) is an organosulfur compound with the formula C10H7NHC(S)NH2. This a white, crystalline powder although commercial samples may be off-white. It is used as a rodenticide and as such is fairly toxic. Naphthylthiourea is available as 10% active baits in suitable protein- or carbohydrate-rich materials and as a 20% tracking powder.

Vitamin K<sub>2</sub> Group of vitamins and bacterial metabolites

Vitamin K2 or menaquinone (MK) is one of three types of vitamin K, the other two being vitamin K1 (phylloquinone) and K3 (menadione). K2 is both a tissue and bacterial product (derived from vitamin K1 in both cases) and is usually found in animal products or fermented foods.

<span class="mw-page-title-main">Substances poisonous to dogs</span> Harmful substances

Food products and household items commonly handled by humans can be toxic to dogs. The symptoms can range from simple irritation to digestion issues, behavioral changes, and even death. The categories of common items ingested by dogs are food products, human medication, household detergents, indoor and outdoor toxic plants, and rat poison.

References

  1. "EPA: Difenacoum" . Retrieved 3 April 2015.[ permanent dead link ]
  2. "University of Hertfordshire: IUPAC: difenacoum" . Retrieved 3 April 2015.
  3. Gupta, Ramesh C. (ed) (2012). Veterinary Toxicology: Basic and clinical principles. Academic Press. pp. 673–697. ISBN   9780123859273 . Retrieved 3 April 2015.{{cite book}}: |author= has generic name (help)
  4. "Vitamin K Therapy". 8 February 2019.
  5. "Vitamin K Therapy". 8 February 2019.