Ethyl methanesulfonate

Last updated
Ethyl methanesulfonate [1]
Ethyl-mesylate-2D-skeletal.svg
Ethyl-mesylate-3D-balls.png
Names
Preferred IUPAC name
Ethyl methanesulfonate
Other names
Ethyl mesylate
Ethyl methanesulphonate
Identifiers
3D model (JSmol)
AbbreviationsEMS
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.488 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-536-7
KEGG
PubChem CID
UNII
  • InChI=1S/C3H8O3S/c1-3-6-7(2,4)5/h3H2,1-2H3 Yes check.svgY
    Key: PLUBXMRUUVWRLT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H8O3S/c1-3-6-7(2,4)5/h3H2,1-2H3
    Key: PLUBXMRUUVWRLT-UHFFFAOYAM
  • O=S(=O)(OCC)C
Properties
CH3SO3C2H5
Molar mass 124.16 g/mol
AppearanceClear colorless liquid
Density 1.1452 g/cm3 (22 °C)
Melting point < 25 °C
Boiling point 85–86 °C (185–187 °F; 358–359 K) /10 mmHg(lit)
Vapor pressure 0.044 kPa @ 25˚C [2]
Hazards
GHS labelling: [3]
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H302, H340, H351
P203, P264, P270, P280, P301+P317, P318, P330, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ethyl methanesulfonate (EMS) is an organosulfur compound with the formula CH3SO3C2H5. It is the ethyl ester of methanesulfonic acid. A colorless liquid, it is classified as an alkylating agent. EMS is the most commonly used chemical mutagen in experimental genetics. [4] [5] Mutations induced by EMS exposure can then be studied in genetic screens or other assays.

Contents

Use in biological research

EMS produces random mutations in genetic material by nucleotide substitution; particularly through G:C to A:T transitions induced by guanine alkylation. EMS typically produces only point mutations. Due to its potency and well understood mutational spectrum,

EMS can induce mutations at a rate of 5x10−4 to 5x10−2 per gene without substantial killing. A 5x10−4 per gene mutation rate observed in a typical EMS mutagenesis experiment of the model organism C. elegans , corresponds to a raw mutation rate of ~7x10−6 mutations per G/C base pair, or about 250 mutations within an originally mutagenized gamete (containing a ~100 Mbp, 36% GC haploid genome). [6] Such a mutagenized gamete would have about 9 different loss-of-function mutations in genes, with 1 to 2 of these mutations being within essential genes and therefore lethal. However, since it is unlikely the same essential gene is mutated in independent gametes, and if loss of the essential gene did not kill the gamete itself, downstream gamete fusion often allows for survival of the resulting zygote and organism, as the now heterozygous non-functional mutated allele may be rescued by the still wildtype allele provided by the other gamete. [6]

Mechanism of mutagenesis

The ethyl group of EMS reacts with guanine in DNA, forming the abnormal base O6-ethylguanine. During DNA replication, DNA polymerases that catalyze the process frequently place thymine, instead of cytosine, opposite O6-ethylguanine. Following subsequent rounds of replication, the original G:C base pair can become an A:T pair (a transition mutation). This changes the genetic information, is often harmful to cells, and can result in disease. RNA polymerase can also place uridine (RNA analog of thymine) opposite an O6-ethylguanine lesion. [7]

Repair of mutagenic lesion

O6-ethylguanine can be repaired in vivo in a stoichiometric fashion by reacting with the active site cysteine of the O-6-methylguanine-DNA methyltransferase repair protein. [8] The in vivo half-life of O6-ethylguanine was reported to be about 9 days in mouse brain, while it was about 1 day in mouse liver. [9]

Induction of recombination

EMS induces mitotic recombination in Saccharomyces cerevisiae . [10] It was suggested that EMS damage to DNA may result in a repair process leading to genetic exchange. [10]

Bacteriophage T4 mutants defective in any one of six genes known to be required for genetic recombination were found to be more sensitive to inactivation by EMS than wild type bacteriophage. [11] This finding suggests that a recombination process catalyzed by the proteins specified by these six genes is employed in repairing EMS lethal lesions in DNA. [11]

Stability

Generally speaking EMS is unstable in water. It hydrolyzes to ethanol and methanesulfonic acid. At neutral to acidic pH at room temperature, it has a fairly long half-life of over 1 day. [12] [13] Therefore, EMS must be specifically degraded before disposal. Protocols call for degradation of EMS in an equal volume of a 0.1M NaOH and 20% w/v sodium thiosulfate "inactivating solution", for at least six half-lives (>24 hours). [6] The half-life of EMS in 1M NaOH is 6 hours at room temperature, while in a 10% w/v sodium thiosulfate solution it has a half-life of 1.4 hours. [13]

Safety

EMS is mutagenic, teratogenic, and carcinogenic .

See also

Related Research Articles

Mutagenesis is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using laboratory procedures. A mutagen is a mutation-causing agent, be it chemical or physical, which results in an increased rate of mutations in an organism's genetic code. In nature mutagenesis can lead to cancer and various heritable diseases, and it is also a driving force of evolution. Mutagenesis as a science was developed based on work done by Hermann Muller, Charlotte Auerbach and J. M. Robson in the first half of the 20th century.

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. 

A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function.

<span class="mw-page-title-main">ENU</span> Chemical compound

ENU, also known as N-ethyl-N-nitrosourea (chemical formula C3H7N3O2), is a highly potent mutagen. For a given gene in mice, ENU can induce 1 new mutation in every 700 loci. It is also toxic at high doses.

<span class="mw-page-title-main">SOS response</span> Biological process

The SOS response is a global response to DNA damage in which the cell cycle is arrested and DNA repair and mutagenesis are induced. The system involves the RecA protein. The RecA protein, stimulated by single-stranded DNA, is involved in the inactivation of the repressor (LexA) of SOS response genes thereby inducing the response. It is an error-prone repair system that contributes significantly to DNA changes observed in a wide range of species.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

Forward genetics is a molecular genetics approach of determining the genetic basis responsible for a phenotype. Forward genetics provides an unbiased approach because it relies heavily on identifying the genes or genetic factors that cause a particular phenotype or trait of interest.

TILLING is a method in molecular biology that allows directed identification of mutations in a specific gene. TILLING was introduced in 2000, using the model plant Arabidopsis thaliana, and expanded on into other uses and methodologies by a small group of scientists including Luca Comai. TILLING has since been used as a reverse genetics method in other organisms such as zebrafish, maize, wheat, rice, soybean, tomato and lettuce.

Balancer chromosomes are a type of genetically engineered chromosome used in laboratory biology for the maintenance of recessive lethal mutations within living organisms without interference from natural selection. Since such mutations are viable only in heterozygotes, they cannot be stably maintained through successive generations and therefore continually lead to production of wild-type organisms, which can be prevented by replacing the homologous wild-type chromosome with a balancer. In this capacity, balancers are crucial for genetics research on model organisms such as Drosophila melanogaster, the common fruit fly, for which stocks cannot be archived. They can also be used in forward genetics screens to specifically identify recessive lethal mutations. For that reason, balancers are also used in other model organisms, most notably the nematode worm Caenorhabditis elegans and the mouse.

<span class="mw-page-title-main">Crosslinking of DNA</span> Phenomenon in genetics

In genetics, crosslinking of DNA occurs when various exogenous or endogenous agents react with two nucleotides of DNA, forming a covalent linkage between them. This crosslink can occur within the same strand (intrastrand) or between opposite strands of double-stranded DNA (interstrand). These adducts interfere with cellular metabolism, such as DNA replication and transcription, triggering cell death. These crosslinks can, however, be repaired through excision or recombination pathways.

Postreplication repair is the repair of damage to the DNA that takes place after replication.

<span class="mw-page-title-main">Methylated-DNA-protein-cysteine methyltransferase</span> Mammalian protein found in Homo sapiens

Methylated-DNA--protein-cysteine methyltransferase(MGMT), also known as O6-alkylguanine DNA alkyltransferaseAGT, is a protein that in humans is encoded by the MGMT gene. MGMT is crucial for genome stability. It repairs the naturally occurring mutagenic DNA lesion O6-methylguanine back to guanine and prevents mismatch and errors during DNA replication and transcription. Accordingly, loss of MGMT increases the carcinogenic risk in mice after exposure to alkylating agents. The two bacterial isozymes are Ada and Ogt.

6-<i>O</i>-Methylguanine Chemical compound

6-O-Methylguanine is a derivative of the nucleobase guanine in which a methyl group is attached to the oxygen atom. It base-pairs to thymine rather than cytosine, causing a G:C to A:T transition in DNA.

DNA polymerase IV is a prokaryotic polymerase that is involved in mutagenesis and is encoded by the dinB gene. It exhibits no 3′→5′ exonuclease (proofreading) activity and hence is error prone. In E. coli, DNA polymerase IV is involved in non-targeted mutagenesis. Pol IV is a Family Y polymerase expressed by the dinB gene that is switched on via SOS induction caused by stalled polymerases at the replication fork. During SOS induction, Pol IV production is increased tenfold and one of the functions during this time is to interfere with Pol III holoenzyme processivity. This creates a checkpoint, stops replication, and allows time to repair DNA lesions via the appropriate repair pathway. Another function of Pol IV is to perform translesion synthesis at the stalled replication fork like, for example, bypassing N2-deoxyguanine adducts at a faster rate than transversing undamaged DNA. Cells lacking dinB gene have a higher rate of mutagenesis caused by DNA damaging agents.

DNA Polymerase V is a polymerase enzyme involved in DNA repair mechanisms in bacteria, such as Escherichia coli. It is composed of a UmuD' homodimer and a UmuC monomer, forming the UmuD'2C protein complex. It is part of the Y-family of DNA Polymerases, which are capable of performing DNA translesion synthesis (TLS). Translesion polymerases bypass DNA damage lesions during DNA replication - if a lesion is not repaired or bypassed the replication fork can stall and lead to cell death. However, Y polymerases have low sequence fidelity during replication. When the UmuC and UmuD' proteins were initially discovered in E. coli, they were thought to be agents that inhibit faithful DNA replication and caused DNA synthesis to have high mutation rates after exposure to UV-light. The polymerase function of Pol V was not discovered until the late 1990s when UmuC was successfully extracted, consequent experiments unequivocally proved UmuD'2C is a polymerase. This finding lead to the detection of many Pol V orthologs and the discovery of the Y-family of polymerases.

<span class="mw-page-title-main">Reverse genetics</span> Method in molecular genetics

Reverse genetics is a method in molecular genetics that is used to help understand the function(s) of a gene by analysing the phenotypic effects caused by genetically engineering specific nucleic acid sequences within the gene. The process proceeds in the opposite direction to forward genetic screens of classical genetics. While forward genetics seeks to find the genetic basis of a phenotype or trait, reverse genetics seeks to find what phenotypes are controlled by particular genetic sequences.

<span class="mw-page-title-main">Mutagenesis (molecular biology technique)</span>

In molecular biology, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce libraries of mutant genes, proteins, strains of bacteria, or other genetically modified organisms. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated.

References

  1. Merck Index , 11th Edition, 3782.
  2. "Ethyl Methanesulfonate" (PDF). Report on Carcinogens, Fourteenth Edition. NIEHS. Retrieved 18 June 2021.
  3. "Ethyl methanesulfonate". pubchem.ncbi.nlm.nih.gov.
  4. Kutscher, Lena M.; Shaham, Shai (2014). "Forward and reverse mutagenesis in C. elegans". WormBook: The Online Review of C. Elegans Biology. WormBook: 1–26. doi:10.1895/wormbook.1.167.1. PMC   4078664 . PMID   24449699 . Retrieved 18 June 2021.
  5. Sega, Gary A. (1984). "A review of the genetic effects of ethyl methanesulfonate". Mutation Research/Reviews in Genetic Toxicology. Elsevier BV. 134 (2–3): 113–142. doi:10.1016/0165-1110(84)90007-1. ISSN   0165-1110. PMID   6390190.
  6. 1 2 3 Anderson, Philip (1995). "Chapter 2 Mutagenesis". Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology. Vol. 48. Elsevier. pp. 31–58. doi:10.1016/s0091-679x(08)61382-5. ISBN   978-0-12-564149-4. ISSN   0091-679X.
  7. Gerchman, Lois L.; Ludlum, David B. (1973). "The properties of in templates for RNA polymerase". Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. Elsevier BV. 308 (2): 310–316. doi:10.1016/0005-2787(73)90160-3. ISSN   0005-2787. PMID   4706005.
  8. Pegg, Anthony E (2000). "Repair of O6-alkylguanine by alkyltransferases". Mutation Research/Reviews in Mutation Research. Elsevier BV. 462 (2–3): 83–100. doi:10.1016/s1383-5742(00)00017-x. ISSN   1383-5742. PMID   10767620.
  9. Goth, R.; Rajewsky, M. F. (1974-03-01). "Persistence of O6-Ethylguanine in Rat-Brain DNA: Correlation with Nervous System-Specific Carcinogenesis by Ethylnitrosourea". Proceedings of the National Academy of Sciences. 71 (3): 639–643. Bibcode:1974PNAS...71..639G. doi: 10.1073/pnas.71.3.639 . ISSN   0027-8424. PMC   388067 . PMID   4522778.
  10. 1 2 Yost Jr, H. T.; Chaleff, R. S.; Finerty, J. P. (1967). "Induction of mitotic recombination in Saccharomyces cerevisiae by ethyl methane sulphonate". Nature. 215 (5101): 660–661. Bibcode:1967Natur.215..660Y. doi:10.1038/215660a0. PMID   6050236. S2CID   1982778.
  11. 1 2 Johns, V.; Bernstein, C.; Bernstein, H. (1978). "Recombinational repair of alkylation lesions in phage T4. II. Ethyl methanesulfonate". Molecular & General Genetics. 167 (2): 197–207. doi:10.1007/BF00266913. PMID   215891. S2CID   30597383.
  12. FROESE-GERTZEN, EDITH E.; KONZAK, C. F.; FOSTER, R.; NILAN, R. A. (1963). "Correlation between Some Chemical and Biological Reactions of Ethyl Methanesulphonate". Nature. Springer Science and Business Media LLC. 198 (4879): 447–448. Bibcode:1963Natur.198..447F. doi:10.1038/198447a0. ISSN   0028-0836. S2CID   12359460.
  13. 1 2 Kodym, Andrea; Afza, Rownak (2003). "Chapter 12 Physical and Chemical Mutagenesis". Plant functional genomics. Totowa, N.J: Humana Press. pp. 189–203. ISBN   978-1-58829-145-5. OCLC   51445955.