Kepler-442

Last updated
Kepler-442
Observation data
Epoch J2000       Equinox J2000
Constellation Lyra
Right ascension 19h 01m 27.9743s [1]
Declination +39° 16 48.224 [1]
Apparent magnitude  (V)14.976 [2]
Characteristics
Evolutionary stage Main sequence
Spectral type K5V [3] [4]
Astrometry
Proper motion (μ)RA: 7.784(18)  mas/yr [1]
Dec.: 1.882(19)  mas/yr [1]
Parallax (π)2.7269 ± 0.0165  mas [1]
Distance 1,196 ± 7  ly
(367 ± 2  pc)
Absolute magnitude  (MV)7.73+0.28
−0.25
[2]
Details
Mass 0.61 ± 0.03 [2]   M
Radius 0.60 ± 0.02 [2]   R
Luminosity (bolometric)0.117 [5]   L
Luminosity (visual, LV)0.069 [nb 1]   L
Temperature 4402 ± 100 [2]   K
Metallicity [Fe/H]−0.37 ± 0.10 [2]   dex
Age 2.9+8.1
−0.2
[2]   Gyr
Other designations
Gaia DR2  2100258047339711488, KOI-4742, KIC  4138008, 2MASS J19012797+3916482 [6]
Database references
SIMBAD data

Kepler-442 is a K-type main-sequence star approximately 1,196 light years from Earth in the constellation Lyra. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. On January 6, 2015, along with the notable stars of Kepler-438 and Kepler-440, it was announced that the star has an extrasolar planet (a super-Earth) orbiting within the habitable zone, named Kepler-442b. [2]

Contents

Nomenclature and history

The Kepler Space Telescope search volume, in the context of the Milky Way Galaxy. LombergA1024.jpg
The Kepler Space Telescope search volume, in the context of the Milky Way Galaxy.

Prior to Kepler observation, Kepler-442 had the 2MASS catalogue number 2MASS J19012797+3916482. In the Kepler Input Catalog it has the designation of KIC 4138008, and when it was found to have transiting planet candidates it was given the Kepler object of interest number of KOI-4742.

Planetary candidates were detected around the star by NASA's Kepler Mission, a mission tasked with discovering planets in transit around their stars. The transit method that Kepler uses involves detecting dips in brightness in stars. These dips in brightness can be interpreted as planets whose orbits pass in front of their stars from the perspective of Earth, although other phenomenon can also be responsible which is why the term planetary candidate is used. [7]

Following the acceptance of the discovery paper, the Kepler team provided an additional moniker for the system of "Kepler-442". [8] The discoverers referred to the star as Kepler-442, which is the normal procedure for naming the exoplanets discovered by the spacecraft. [2] Hence, this is the name used by the public to refer to the star and its planet.

Candidate planets that are associated with stars studied by the Kepler Mission are assigned the designations ".01" etc. after the star's name, in the order of discovery. [9] If planet candidates are detected simultaneously, then the ordering follows the order of orbital periods from shortest to longest. [9] Following these rules, there was only candidate planet were detected, with an orbital period of 112.3053 days.

The designation b derive from the order of discovery. The designation of b is given to the first planet orbiting a given star, followed by the other lowercase letters of the alphabet. [10] In the case of Kepler-442, there was only one planet detected, so only the letter b is used. The name Kepler-442 derives directly from the fact that the star is the catalogued 442nd star discovered by Kepler to have confirmed planets.

Stellar characteristics

Kepler-442 is a K-type main sequence star that is approximately 61% the mass of and 60% the radius of the Sun. It has a temperature of 4402 K and is about 2.9 billion years old, but the margin of error here is quite large. [2] In comparison, the Sun is about 4.6 billion years old [11] and has a temperature of 5778 K. [12]

The star is somewhat poor in metals, with a metallicity ([Fe/H]) of about –0.37, or about 43% of the amount of iron and other heavier metals found in the Sun. [2] The star's luminosity is a bit low for a star like Kepler-442, with a luminosity of around 12% of that of the solar luminosity. [5]

Kepler-442 orbits a star with an apparent magnitude of 14.976, rendering it too faint to be visible to the naked eye from Earth. This dimness poses a challenge for direct observation.

Planetary system

The Kepler-442 planetary system [2]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 2.3+5.9
1.3
  M🜨
0.409+0.209
0.060
112.3053+0.0024
0.0028
0.04+0.08
0.04
89.94+0.06
0.12
°
1.34+0.11
0.18
  R🜨

The only known planet transits the star; this means that the planet's orbit appear to cross in front of their star as viewed from the Earth's perspective. Its inclination relative to Earth's line of sight, or how far above or below the plane of sight it is, vary by less than one degree. This allows direct measurements of the planet's periods and relative diameters (compared to the host star) by monitoring the planet's transit of the star.

Kepler-442b is a super-Earth with a radius 1.34 times that of Earth, and orbits well within the habitable zone. It is likely a rocky planet due to its radius. According to NASA, it was described as being one of the most Earth-like planets, in terms of size and temperature, yet found. [13] [14] It is just outside of the zone (around 0.362 AU) where tidal forces from its host star would be enough to tidally lock it. [15]

See also

Notes

  1. With the absolute visual magnitude of Kepler-442, , and the Sun, , the visual luminosity of Kepler-442 is calculated from:

Related Research Articles

GJ 1061 is a red dwarf star located 12 light-years from Earth in the southern constellation of Horologium. Even though it is a relatively nearby star, it has an apparent visual magnitude of about 13, so it can only be seen with at least a moderately-sized telescope.

Groombridge 1618 is a star in the northern constellation Ursa Major. With an apparent visual magnitude of +6.6, it lies at or below the threshold of stars visible to the naked eye for an average observer. It is relatively close to Earth, at 15.89 light-years (4.87 pc). This is a main sequence star of spectral type K7.5 Ve, having just 67% of the Sun's mass.

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

Gliese 581 is a red dwarf star of spectral type M3V at the center of the Gliese 581 planetary system, about 20.5 light years away from Earth in the Libra constellation. Its estimated mass is about a third of that of the Sun, and it is the 101st closest known star system to the Sun. Gliese 581 is one of the oldest, least active M dwarfs known. Its low stellar activity improves the likelihood of its planets retaining significant atmospheres, and lessens the sterilizing impact of stellar flares.

<span class="mw-page-title-main">HD 40307</span> Star in the constellation Pictor

HD 40307 is an orange (K-type) main-sequence star located approximately 42 light-years away in the constellation of Pictor, taking its primary name from its Henry Draper Catalogue designation. It is calculated to be slightly less massive than the Sun. The star has six known planets, three discovered in 2008 and three more in 2012. One of them, HD 40307 g, is a potential super-Earth in the habitable zone, with an orbital period of about 200 days. This object might be capable of supporting liquid water on its surface, although much more information must be acquired before its habitability can be assessed.

Kepler-47 is a binary star system in the constellation Cygnus located about 3,420 light-years away from Earth. The stars have three exoplanets, all of which orbit both stars at the same time, making this a circumbinary system. The first two planets announced are designated Kepler-47b, and Kepler-47c, and the third, later discovery is Kepler-47d. Kepler-47 is the first circumbinary multi-planet system discovered by the Kepler mission. The outermost of the planets is a gas giant orbiting within the habitable zone of the stars. Because most stars are binary, the discovery that multi-planet systems can form in such a system has impacted previous theories of planetary formation.

<span class="mw-page-title-main">Kepler-62</span> K-type star in the constellation Lyra

Kepler-62 is a K-type main sequence star cooler and smaller than the Sun, located roughly 980 light-years from Earth in the constellation Lyra. It resides within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. On April 18, 2013, it was announced that the star has five planets, two of which, Kepler-62e and Kepler-62f are within the star's habitable zone. The outermost, Kepler-62f, is likely a rocky planet.

<span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

<span class="mw-page-title-main">Kepler-69</span> Star in the constellation Cygnus

Kepler-69 is a G-type main-sequence star similar to the Sun in the constellation Cygnus, located about 2,430 ly (750 pc) from Earth. On April 18, 2013 it was announced that the star has two planets. Although initial estimates indicated that the terrestrial planet Kepler-69c might be within the star's habitable zone, further analysis showed that the planet very likely is interior to the habitable zone and is far more analogous to Venus than to Earth and thus completely inhospitable.

Kepler-61 is a K-type main-sequence star approximately 1,100 light years from Earth in the constellation Cygnus. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. On April 24, 2013 it was announced that the star has an extrasolar planet orbiting in the inner edge of the habitable zone, named Kepler-61b.

<span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

<span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

<span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

<span class="mw-page-title-main">Kepler-452</span> G-type main-sequence star in the constellation Cygnus

Kepler-452 is a G-type main-sequence star located about 1,810 light-years away from Earth in the Cygnus constellation. Although similar in temperature to the Sun, it is 20% brighter, 3.7% more massive and 11% larger. Alongside this, the star is approximately six billion years old and possesses a high metallicity.

HD 219134 g, also known as HR 8832 g, is an unconfirmed exoplanet orbiting around the K-type star HD 219134 in the constellation of Cassiopeia. It has a minimum mass of 11 or 15 Earth masses, suggesting that it is likely a Neptune-like ice giant. Unlike HD 219134 b and HD 219134 c it is not observed to transit and thus its radius and density are unknown. If it has an Earth-like composition, it would have a radius 1.9 times that of Earth. However, since it is probably a Neptune-like planet, it is likely larger.

Kepler-1229 is a red dwarf star located about 870 light-years (270 pc) away from the Earth in the constellation of Cygnus. It is known to host a super-Earth exoplanet within its habitable zone, Kepler-1229b, which was discovered in 2016.

K2-72 is a cool red dwarf star of spectral class M2.7V located about 217 light-years away from the Earth in the constellation of Aquarius. It is known to host four planets, all similar in size to Earth, with one of them residing within the habitable zone.

Kepler-419 is an F-type main-sequence star located about 3,400 light years from Earth in the constellation Cygnus. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. In 2012, a potential planetary companion in a very eccentric orbit was detected around this star, but its planetary nature was not confirmed until 12 June 2014, when it was named Kepler-419b. A second planet was announced orbiting further out from the star in the same paper, named Kepler-419c.

Kepler-432 is a binary star system with at least two planets in orbit around the primary companion, located about 2,780 light-years away from Earth.

<span class="mw-page-title-main">K2-33</span> Star in the constellation Scorpius

K2-33 is an extremely young pre-main-sequence star located about 453 light-years (139 pc) away from the Earth in the constellation of Scorpius. It is known to host one planet, a super-Neptune, named K2-33b. It is also notable for its young age.

References

  1. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Torres, Guillermo; Kipping, David M.; Fressin, Francois; Caldwell, Douglas A.; Twicken, Joseph D.; Ballard, Sarah; Batalha, Natalie M.; Bryson, Stephen T.; Ciardi, David R.; Henze, Christopher E.; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon M.; Muirhead, Philip S.; Newton, Elisabeth R.; Petigura, Erik A.; Barclay, Thomas; Borucki, William J.; Crepp, Justin R.; Everett, Mark E.; Horch, Elliott P.; Howard, Andrew W.; Kolbl, Rea; Marcy, Geoffrey W.; McCauliff, Sean; Quintana, Elisa V. (2015). "Validation of 12 Small Kepler Transiting Planets in the Habitable Zone". The Astrophysical Journal. 800 (2): 99. arXiv: 1501.01101 . Bibcode:2015ApJ...800...99T. doi:10.1088/0004-637X/800/2/99. S2CID   8512655.
  3. Fraser Cain (10 January 2020). "The Perfect Stars to Search for Life On Their Planets". Universe Today . Retrieved 23 June 2021.
  4. "Goldilocks Stars Are Best Places to Look for Life". NASA. 21 September 2020 [14 January 2020]. Retrieved 23 June 2021. "Kepler-442 is noteworthy in that this star (spectral classification, K5) hosts what is considered one of the best Goldilocks planets, Kepler-442b, a rocky planet that is a little more than twice Earth's mass. So the Kepler-442 system is a Goldilocks planet hosted by a Goldilocks star!" said Guinan.
  5. 1 2 Kepler 442b hpcf.upr.edu
  6. "Kepler-442". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2020-08-21.
  7. Morton, Timothy; Johnson, John (23 August 2011). "On the Low False Positive Probabilities of Kepler Planet Candidates". The Astrophysical Journal. 738 (2): 170. arXiv: 1101.5630 . Bibcode:2011ApJ...738..170M. doi:10.1088/0004-637X/738/2/170. S2CID   35223956.
  8. NASA (27 January 2014). "Kepler – Discoveries – Summary Table". NASA. Archived from the original on 27 May 2010. Retrieved 1 March 2014.
  9. 1 2 "Kepler Input Catalog search result". Space Telescope Science Institute . Retrieved 18 April 2013.
  10. Hessman, F. V.; Dhillon, V. S.; Winget, D. E.; Schreiber, M. R.; Horne, K.; Marsh, T. R.; Guenther, E.; Schwope, A.; Heber, U. (2010). "On the naming convention used for multiple star systems and extrasolar planets". arXiv: 1012.0707 [astro-ph.SR].
  11. Fraser Cain (16 September 2008). "How Old is the Sun?". Universe Today . Retrieved 19 February 2011.
  12. Fraser Cain (15 September 2008). "Temperature of the Sun". Universe Today. Retrieved 19 February 2011.
  13. Clavin, Whitney; Chou, Felicia; Johnson, Michele (6 January 2015). "NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones". NASA . Retrieved 6 January 2015.
  14. Sample, Ian (7 January 2015). "Kepler 438b: Most Earth-like planet ever discovered could be home for alien life". The Guardian . Retrieved 7 January 2015.
  15. "Planetary Habitability Laboratory at University of Puerto Rico". Archived from the original on 2012-01-08. Retrieved 2016-07-30.