Lundgreni Event

Last updated

The Lundgreni Event, also known as the Mid-Homerian Biotic Crisis, [1] was an extinction event during the middle Homerian age of the Silurian period. Evidence for the event has been observed in Silurian marine deposits in the Iberian Peninsula, [2] Bohemia, [1] and Poland. [3]

Contents

Timing

In the Kosov quarry in Bohemia, the extinction is observed during the latest lundgreni biozone and over the course of the flemingii biozone interval. The following parvus biozone, corresponding to the nassa, the parvus-nassa, or dubious-nassa biozones in other localities, represents a post-extinction interval, which is in turn followed by the frequens, praedeubeli-deubeli, and ludensis-gerhardi biozones that mark the period of recovery from the extinction. [1]

Causes

Eutrophication and anoxia coeval with abrupt ecological changes have been implicated as extinction mechanisms bringing about the Lundgreni Event. Immediately after the extinction event, geological records from Bartoszyce evidence a sharp slowdown of ocean mixing. The Lundgreni Event has been hypothesised to have occurred during a period of global marine transgression, a proposed explanation cohering with the relative lack of effect this biotic crisis had on benthic fauna due to the fact that anoxia would likely not have spread into shallow, epicontinental seas. [3]

Isotopic effects

The extinction is marked by the start of a double-peaked positive carbon isotope excursion beginning in the lundgreni graptolite biozone. The first peak spans from the uppermost portion of the lundgreni biozone all the way to the praedeubeli-deubeli graptolite biozone, with a particularly sharp trend towards increasingly positive δ13C values observed during the flemingii and parvus graptolite biozones, corresponding to the extinction interval. The second peak’s start is close to the base of the ludensis-gerhardi graptolite biozone, during the recovery interval. [1]

Biotic effects

The crisis primarily affected graptolites, benthic organisms, and microphytoplankton. [3]

Graptolite species richness reached a worldwide minimum during the extinction event. [1] Cyrtograptids were rendered extinct by the event, [2] while monograptids managed to survive. [4] The genus Monograptus and the family Monoclimacidae were driven to near-extinction. [2] The recovery of graptolites was dominated by retiolitids, and novel graptolite morphological innovations, such as hooded, hooked, lobate, and spinose thecal apertures, sicular cladia, and S-shaped rhabdosomes, have been documented to have evolved among graptolites during the adaptive radiation following the environmental perturbations of the Lundgreni Event. [1]

In Bartoszyce, benthic faunas did not experience an extinction synchronous with the graptolite crisis, and experienced a spike in abundance during the post-extinction period believed to be related to the decline in eutrophication. [3]

In Kosov, the benthic fauna of the lundgreni biozone, dominated by epibyssate cardiolid bivalves (Cardiola, Isiola) and rare reclining bivalves (Slava, Dualina), along with atrypid brachiopods and crinoids, was replaced with the Decoroproetus–Ravozetina fauna, dominated by trilobites, hyolithids, machaeridians, and the linguliform brachiopod Paterula during the parvus biozone. [1]

Acritarchs and prasinophytes suffered no extinction during the crisis, although their relative frequencies and abundances did vary over the course of the extinction event as marine environments were perturbed. [3]

Pelagic cephalopods, other than a drop in overall abundance, were unaffected by the biotic crisis, and saw no meaningful decrease in diversity. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Ordovician</span> Second period of the Paleozoic Era 485–444 million years ago

The Ordovician is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma to the start of the Silurian Period 443.8 Ma.

<span class="mw-page-title-main">Permian–Triassic extinction event</span> Earths most severe extinction event

Approximately 251.9 million years ago, the Permian–Triassicextinction event forms the boundary between the Permian and Triassic geologic periods, and with them the Paleozoic and Mesozoic eras. It is the Earth's most severe known extinction event, with the extinction of 57% of biological families, 83% of genera, 81% of marine species and 70% of terrestrial vertebrate species. It is also the greatest known mass extinction of insects. It is the greatest of the "Big Five" mass extinctions of the Phanerozoic. There is evidence for one to three distinct pulses, or phases, of extinction.

<span class="mw-page-title-main">Silurian</span> Third period of the Paleozoic Era, 443–419 million years ago

The Silurian is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the shortest period of the Paleozoic Era. As with other geologic periods, the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out.

<span class="mw-page-title-main">Late Ordovician mass extinction</span> Extinction event around 444 million years ago

The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician-Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest known extinction event just behind the end-Permian mass extinction, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian-Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves, and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

<span class="mw-page-title-main">Late Devonian extinction</span> One of the five most severe extinction events in the history of the Earths biota

The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which occurred around 372 million years ago, at the boundary between the Frasnian stage and the Famennian stage, the last stage in the Devonian Period. Overall, 19% of all families and 50% of all genera became extinct. A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago, bringing an end to the Famennian and Devonian, as the world transitioned into the Carboniferous Period.

<span class="mw-page-title-main">Cambrian–Ordovician extinction event</span> Mass extinction event about 488 million years ago

The Cambrian–Ordovician extinction event, also known as the Cambrian-Ordovician boundary event, was an extinction event that occurred approximately 485 million years ago (mya) in the Paleozoic era of the early Phanerozoic eon. It was preceded by the less-documented End-Botomian mass extinction around 517 million years ago, and the Dresbachian extinction event about 502 million years ago.

The Andean-Saharan glaciation, also known as the Early Paleozoic Ice Age (EPIA), the Early Paleozoic Icehouse, the Late Ordovician glaciation, the end-Ordovician glaciation, or the Hirnantian glaciation, occurred during the Paleozoic from approximately 460 Ma to around 420 Ma, during the Late Ordovician and the Silurian period. The major glaciation during this period was formerly thought only to consist of the Hirnantian glaciation itself but has now been recognized as a longer, more gradual event, which began as early as the Darriwilian, and possibly even the Floian. Evidence of this glaciation can be seen in places such as Arabia, North Africa, South Africa, Brazil, Peru, Bolivia, Chile, Argentina, and Wyoming. More evidence derived from isotopic data is that during the Late Ordovician, tropical ocean temperatures were about 5 °C cooler than present day; this would have been a major factor that aided in the glaciation process.

<span class="mw-page-title-main">Gorstian</span> Sixth stage of the Silurian

In the geologic timescale, the Gorstian is an age of the Ludlow Epoch of the Silurian Period of the Paleozoic Era of the Phanerozoic Eon that is comprehended between 427.4 ± 0.5 Ma and 425.6 ± 0.9 Ma, approximately. The Gorstian Age succeeds the Homerian Age and precedes the Ludfordian Age. The age is named after Gorsty village southwest of Ludlow. The base of the age is marked by Graptolites tumescens and Graptolites incipiens. The type section is located in a quarry in the Elton Formation at Pitch Coppice, Shropshire, United Kingdom.

In the geological timescale, the Llandovery Epoch occurred at the beginning of the Silurian Period. The Llandoverian Epoch follows the massive Ordovician-Silurian extinction events, which led to a large decrease in biodiversity and an opening up of ecosystems.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

The Lau event was the last of three relatively minor mass extinctions during the Silurian period. It had a major effect on the conodont fauna, but barely scathed the graptolites, though they suffered an extinction very shortly thereafter termed the Kozlowskii event that some authors have suggested was coeval with the Lau event and only appears asynchronous due to taphonomic reasons. It coincided with a global low point in sea level caused by glacioeustasy and is closely followed by an excursion in geochemical isotopes in the ensuing late Ludfordian faunal stage and a change in depositional regime.

The Hangenberg event, also known as the Hangenberg crisis or end-Devonian extinction, is a mass extinction that occurred at the end of the Famennian stage, the last stage in the Devonian Period. It is usually considered the second-largest extinction in the Devonian Period, having occurred approximately 13 million years after the Late Devonian mass extinction at the Frasnian-Famennian boundary. The event is named after the Hangenberg Shale, which is part of a sequence that straddles the Devonian-Carboniferous boundary in the Rhenish Massif of Germany.

The Ireviken event was the first of three relatively minor extinction events during the Silurian period. It occurred at the Llandovery/Wenlock boundary. The event is best recorded at Ireviken, Gotland, where over 50% of trilobite species became extinct; 80% of the global conodont species also became extinct in this interval.

The Great Ordovician Biodiversification Event (GOBE), was an evolutionary radiation of animal life throughout the Ordovician period, 40 million years after the Cambrian explosion, whereby the distinctive Cambrian fauna fizzled out to be replaced with a Paleozoic fauna rich in suspension feeder and pelagic animals.

<span class="mw-page-title-main">Athyridida</span> Extinct order of brachiopods

Athyridida is an order of Paleozoic brachiopods included in the Rhynchonellata, which makes up part of the articulate brachiopods.

The Lilliput effect is an observed decrease in animal body size in genera that have survived a major extinction. There are several hypotheses as to why these patterns appear in the fossil record, some of which are

<span class="mw-page-title-main">Capitanian mass extinction event</span> Extinction event around 260 million years ago

The Capitanian mass extinction event, also known as the end-Guadalupian extinction event, the Guadalupian-Lopingian boundary mass extinction, the pre-Lopingian crisis, or the Middle Permian extinction, was an extinction event that predated the end-Permian extinction event. The mass extinction occurred during a period of decreased species richness and increased extinction rates near the end of the Middle Permian, also known as the Guadalupian epoch. It is often called the end-Guadalupian extinction event because of its initial recognition between the Guadalupian and Lopingian series; however, more refined stratigraphic study suggests that extinction peaks in many taxonomic groups occurred within the Guadalupian, in the latter half of the Capitanian age. The extinction event has been argued to have begun around 262 million years ago with the Late Guadalupian crisis, though its most intense pulse occurred 259 million years ago in what is known as the Guadalupian-Lopingian boundary event.

The Dasberg Event was a minor extinction event that occurred during the Famennian, the final stage of the Devonian period. It is often considered to be one of the events contributing to the Late Devonian extinction, which is believed by many palaeontologists to have been a protracted event that took place over millions of years.

The Šilalė Event was an extinction event affecting conodonts during the Přídolí, the final stage of the Silurian period.

<span class="mw-page-title-main">Atrypida</span> Order of extinct brachiopods

Atrypida is an extinct order of rhynchonelliform brachiopods. They first appeared in middle Ordovician and survived the Ordovician-Silurian extinction, becoming the dominant brachiopods of the Silurian alongside the order Pentamerida. They would survive into the Late Devonian before going extinct at the end of the Frasnian.

References

  1. 1 2 3 4 5 6 7 8 Manda, Štěpán; Štorch, Petr; Frýda, Jiří; Slavík, Ladislav; Tasáryová, Zuzana (15 August 2019). "The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data". Palaeogeography, Palaeoclimatology, Palaeoecology . 528: 14–34. Bibcode:2019PPP...528...14M. doi:10.1016/j.palaeo.2019.04.026. S2CID   155234754 . Retrieved 11 January 2023.
  2. 1 2 3 Gutiérrez-Marco, J. C.; Lenz, A. C.; Robardet, M.; Piçarra, J. M. (May 1996). "Wenlock–Ludlow graptolite biostratigraphy and extinction: a reassessment from the southwestern Iberian Peninsula (Spain and Portugal)". Canadian Journal of Earth Sciences . 33 (5): 656–663. Bibcode:1996CaJES..33..656G. doi:10.1139/e96-049 . Retrieved 11 January 2023.
  3. 1 2 3 4 5 Porębska, E.; Kozłowska-Dawidziuk, A.; Masiak, M. (21 October 2004). "The lundgreni event in the Silurian of the East European Platform, Poland". Palaeogeography, Palaeoclimatology, Palaeoecology . 213 (3–4): 271–294. doi:10.1016/j.palaeo.2004.07.013 . Retrieved 11 January 2023.
  4. Whittingham, Misha; Spiridonov, Andrej; Radzevičius, Sigitas (3 December 2021). "Dynamic ecophenotypy in the Silurian Monograptidae (Graptolithina)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh . 113 (1): 29–38. doi: 10.1017/S1755691021000402 . S2CID   244877517.