Mitotic cell rounding

Last updated
Cell shape changes as a function of mitotic phase. Shown is an example of a HeLa cell cultured on a glass surface. For visualization of DNA and mitotic phase assignment, the cell expresses Histone H2B-GFP to provide fluorescent labeling of chromosomes. Transmitted light (DIC), fluorescence (GFP), and merged images are shown every 4 minutes as the cell transitions from G2 phase through mitosis to telophase/G1 phase. CellShape vs M-phase.png
Cell shape changes as a function of mitotic phase. Shown is an example of a HeLa cell cultured on a glass surface. For visualization of DNA and mitotic phase assignment, the cell expresses Histone H2B-GFP to provide fluorescent labeling of chromosomes. Transmitted light (DIC), fluorescence (GFP), and merged images are shown every 4 minutes as the cell transitions from G2 phase through mitosis to telophase/G1 phase.

Mitotic cell rounding is a shape change that occurs in most animal cells that undergo mitosis. Cells abandon the spread or elongated shape characteristic of interphase and contract into a spherical morphology during mitosis. The phenomenon is seen both in artificial cultures in vitro and naturally forming tissue in vivo .

Contents

Early observations

In 1935, one of the first published accounts of mitotic rounding in live tissue described cell rounding in the pseudostratified epithelium of the mammalian neural tube. [1] Sauer noticed that cells in mitosis rounded up to the apical, or luminal, surface of the columnar epithelium before dividing and returning to their elongated morphology.

Significance

For a long time it was not clear why cells became round in mitosis. Recent studies in the epithelia and epidermis of various organisms, however, show that mitotic cell rounding might serve several important functions. [2]

Thus, mitotic cell rounding is involved in tissue organization and homeostasis.

Mechanisms

To understand the physical mechanisms of how cells round up in mitosis, researchers have conducted mechanical measurements with cultured cells in vitro . The forces that drive cell rounding have recently been characterized by researchers from the groups of Professors Tony Hyman and Daniel Muller, who used flat atomic force microscopy cantilevers to constrain mitotic cells and measure the response force. [10] [11] More than 90% of the forces are generated by the collective activity of myosin II molecular motors in the actin cortex. [10] [11] As a result, the surface tension and effective stiffness of the actin cortex increase as has been consistently observed in mitotic cells. [12] [13] [14] This in turn yields an increase in intracellular hydrostatic pressure due to the Law of Laplace, which relates surface tension of a fluid interface to the differential pressure sustained across that interface. [15] The increase in hydrostatic pressure is important because it produces the outward force necessary to push and rounds up against external objects or impediments, such as flexible cantilever, [10] [11] soft gel [8] or micropillar [16] (in vitro examples), or surrounding extracellular matrix and neighboring cells [7] (in vivo examples). In HeLa cells in vitro, the force generated by a half-deformed mitotic cell is on the order of 50 to 100 nanonewtons. [10] [11] Internal hydrostatic pressure has been measured to increase from below 100 pascals in interphase to 3 to 10 fold that in mitosis. [10] [11] [15]

In similar in vitro experiments, it was found that the threshold forces required to prevent mitosis are in excess of 100 nN. [9] At threshold forces the cell suffers a loss of cortical F-actin uniformity, which further amplifies the susceptibility to applied force. These effects potentiate distortion of cell dimensions and subsequent perturbation of mitotic progression via spindle defects. [8] [9]

Release of stable focal adhesions is another important aspect of mitotic rounding. Cells that are genetically perturbed to manifest constitutively active adhesion regulators are unable to properly remodel their focal adhesions and facilitate the generation of a uniform actomyosin cortex. [8] [17] Overall, the biochemical events governing the morphological and mechanical changes in mitotic cells are orchestrated by the mitotic master regulator Cdk1. [11] [18]

Apart from actomyosin-related genes, several disease genes have recently been implicated in mitotic cell rounding. These include Parkinson’s disease associated DJ-1/Park7 and FAM134A/RETREG2. [19]


Related Research Articles

<span class="mw-page-title-main">Mitosis</span> Process in which chromosomes are replicated and separated into two new identical nuclei

Mitosis is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the total number of chromosomes is maintained. Mitosis is preceded by the S phase of interphase and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis altogether define the mitotic phase of a cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.

<span class="mw-page-title-main">Microtubule</span> Polymer of tubulin that forms part of the cytoskeleton

Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.

<span class="mw-page-title-main">Cytokinesis</span> Part of the cell division process

Cytokinesis is the part of the cell division process during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis. During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. It thereby ensures that chromosome number and complement are maintained from one generation to the next and that, except in special cases, the daughter cells will be functional copies of the parent cell. After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle.

<span class="mw-page-title-main">Spindle apparatus</span> Feature of biological cell structure

In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.

<span class="mw-page-title-main">Clathrin</span> Protein playing a major role in the formation of coated vesicles

Clathrin is a protein that plays a major role in the formation of coated vesicles. Clathrin was first isolated by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. When the triskelia interact they form a polyhedral lattice that surrounds the vesicle. The protein's name refers to this lattice structure, deriving from Latin clathri meaning lattice. Barbara Pearse named the protein clathrin at the suggestion of Graeme Mitchison, selecting it from three possible options. Coat-proteins, like clathrin, are used to build small vesicles in order to transport molecules within cells. The endocytosis and exocytosis of vesicles allows cells to communicate, to transfer nutrients, to import signaling receptors, to mediate an immune response after sampling the extracellular world, and to clean up the cell debris left by tissue inflammation. The endocytic pathway can be hijacked by viruses and other pathogens in order to gain entry to the cell during infection.

<span class="mw-page-title-main">Kinetochore</span> Protein complex that allows microtubules to attach to chromosomes during cell division

A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.

<span class="mw-page-title-main">Cell cortex</span> Layer on the inner face of a cell membrane

The cell cortex, also known as the actin cortex, cortical cytoskeleton or actomyosin cortex, is a specialized layer of cytoplasmic proteins on the inner face of the cell membrane. It functions as a modulator of membrane behavior and cell surface properties. In most eukaryotic cells lacking a cell wall, the cortex is an actin-rich network consisting of F-actin filaments, myosin motors, and actin-binding proteins. The actomyosin cortex is attached to the cell membrane via membrane-anchoring proteins called ERM proteins that plays a central role in cell shape control. The protein constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. In most cases, the cortex is in the range of 100 to 1000 nanometers thick.

<span class="mw-page-title-main">Aurora kinase A</span> Protein-coding gene in the species Homo sapiens

Aurora kinase A also known as serine/threonine-protein kinase 6 is an enzyme that in humans is encoded by the AURKA gene.

An asymmetric cell division produces two daughter cells with different cellular fates. This is in contrast to symmetric cell divisions which give rise to daughter cells of equivalent fates. Notably, stem cells divide asymmetrically to give rise to two distinct daughter cells: one copy of the original stem cell as well as a second daughter programmed to differentiate into a non-stem cell fate.

Septins are a group of GTP-binding proteins expressed in all eukaryotic cells except plants. Different septins form protein complexes with each other. These complexes can further assemble into filaments, rings and gauzes. Assembled as such, septins function in cells by localizing other proteins, either by providing a scaffold to which proteins can attach, or by forming a barrier preventing the diffusion of molecules from one compartment of the cell to another, or in the cell cortex as a barrier to the diffusion of membrane-bound proteins.

<span class="mw-page-title-main">Bleb (cell biology)</span> Bulge in the plasma membrane of a cell

In cell biology, a bleb is a bulge of the plasma membrane of a cell, characterized by a spherical, "blister-like", bulky morphology. It is characterized by the decoupling of the cytoskeleton from the plasma membrane, degrading the internal structure of the cell, allowing the flexibility required for the cell to separate into individual bulges or pockets of the intercellular matrix. Most commonly, blebs are seen in apoptosis but are also seen in other non-apoptotic functions. Blebbing, or zeiosis, is the formation of blebs.

In cell biology, microtubule nucleation is the event that initiates de novo formation of microtubules (MTs). These filaments of the cytoskeleton typically form through polymerization of α- and β-tubulin dimers, the basic building blocks of the microtubule, which initially interact to nucleate a seed from which the filament elongates.

<span class="mw-page-title-main">KIF2C</span> Protein-coding gene in the species Homo sapiens

Kinesin-like protein KIF2C is a protein that in humans is encoded by the KIF2C gene.

<span class="mw-page-title-main">CLASP1</span> Protein-coding gene in the species Homo sapiens

Cytoplasmic linker associated protein 1, also known as CLASP1, is a protein which in humans is encoded by the CLASP1 gene.

<span class="mw-page-title-main">ANLN</span> Mammalian protein found in Homo sapiens

Anillin is a conserved protein implicated in cytoskeletal dynamics during cellularization and cytokinesis. The ANLN gene in humans and the scraps gene in Drosophila encode Anillin. In 1989, anillin was first isolated in embryos of Drosophila melanogaster. It was identified as an F-actin binding protein. Six years later, the anillin gene was cloned from cDNA originating from a Drosophila ovary. Staining with anti-anillin antibody showed the anillin localizes to the nucleus during interphase and to the contractile ring during cytokinesis. These observations agree with further research that found anillin in high concentrations near the cleavage furrow coinciding with RhoA, a key regulator of contractile ring formation.

Amitosis, also called karyostenosis, direct cell division or Binary fission, is a type of asexual cell division utilized by most prokaryotes. It differs from other forms of cell division as it does not involve the mitotic apparatus nor the condensation of chromatin into chromosomes.

Cell mechanics is a sub-field of biophysics that focuses on the mechanical properties and behavior of living cells and how it relates to cell function. It encompasses aspects of cell biophysics, biomechanics, soft matter physics and rheology, mechanobiology and cell biology.

Hertwig's rule, or the long axis rule states that a cell divides along its long axis. Introduced by the German zoologist Oscar Hertwig in 1884, the rule emphasizes the cell shape as a default mechanism of spindle apparatus orientation. Hertwig's rule predicts cell division orientation, which is important for tissue architecture, cell fate and morphogenesis.

Xenopus egg extract is a lysate that is prepared by crushing the eggs of the African clawed frog Xenopus laevis. It offers a powerful cell-free system for studying various cell biological processes, including cell cycle progression, nuclear transport, DNA replication and chromosome segregation. It is also called Xenopus egg cell-free system or Xenopus egg cell-free extract.

Barry James Thompson is an Australian and British developmental biologist and cancer biologist. Thompson is known for identifying genes, proteins and mechanisms involved in epithelial polarity, morphogenesis and cell signaling via the Wnt and Hippo signaling pathways, which have key roles in human cancer.

References

  1. Sauer, F.C. (October 1935). "Mitosis in the neural tube". Journal of Comparative Neurology. 62 (2): 377–405. doi:10.1002/cne.900620207. S2CID   84960254.
  2. 1 2 Cadart, Clotilde; Zlotek-Zlotkiewicz, Ewa; Le Berre, Mael; Piel, Matthieu; Matthews, Helen K (28 April 2014). "Exploring the function of cell shape and size during mitosis". Developmental Cell. 29 (2): 159–169. doi: 10.1016/j.devcel.2014.04.009 . PMID   24780736.
  3. Meyer, Emily J; Ikmi, Aissam; Gibson, Matthew C (22 March 2011). "Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia". Current Biology. 21 (6): 485–491. doi: 10.1016/j.cub.2011.02.002 . PMID   21376598.
  4. Luxenburg, Chen; Pasolli, H Amalia; Williams, Scott E; Fuchs, E (20 February 2011). "Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation". Nature Cell Biology. 13 (3): 203–214. doi:10.1038/ncb2163. PMC   3278337 . PMID   21336301.
  5. 1 2 Nakajima, Yu-ichiro; Meyer, Emily J; Kroesen, Amanda; McKinney, Sean A; Gibson, Matthew C (21 July 2013). "Epithelial junctions maintain tissue architecture by directing planar spindle orientation". Nature. 500 (7462): 359–362. Bibcode:2013Natur.500..359N. doi:10.1038/nature12335. PMID   23873041. S2CID   4418619.
  6. Kondo, Takefumi; Hayashi, Shigeo (13 January 2013). "Mitotic cell rounding accelerates epithelial invagination". Nature. 494 (7435): 125–129. Bibcode:2013Natur.494..125K. doi:10.1038/nature11792. PMID   23334416. S2CID   205232184.
  7. 1 2 Hoijman, Esteban; Rubbini, Davide; Colombelli, Julien; Alsina, Berta (16 June 2015). "Mitotic cell rounding and epithelial thinning regulate lumen growth and shape". Nature Communications. 6: 7355. Bibcode:2015NatCo...6.7355H. doi: 10.1038/ncomms8355 . hdl: 10230/25942 . PMID   26077034.
  8. 1 2 3 4 Lancaster, Oscar M; La Berre, Mael; Dimitracopoulos, Andrea; Bonazzi, Daria; Zlotek-Zlotkiewicz, Ewa; Picone, Remigio; Duke, Thomas; Piel, Matthieu; Baum, Buzz (13 May 2013). "Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation" (PDF). Developmental Cell. 25 (3): 270–283. doi: 10.1016/j.devcel.2013.03.014 . PMID   23623611.
  9. 1 2 3 Cattin, Cedric J; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Mueller, Daniel J; Stewart, Martin P (2015). "Mechanical control of mitotic progression in single animal cells". Proceedings of the National Academy of Sciences. 112 (36): 11258–11263. Bibcode:2015PNAS..11211258C. doi: 10.1073/pnas.1502029112 . PMC   4568679 . PMID   26305930.
  10. 1 2 3 4 5 Stewart, Martin P; Helenius, Jonne; Toyoda, Yusuke; Ramanathan, Subramanian P; Muller, Daniel J; Hyman, Anthony A (2 January 2011). "Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding". Nature. 469 (7329): 226–230. Bibcode:2011Natur.469..226S. doi:10.1038/nature09642. PMID   21196934. S2CID   4425308.
  11. 1 2 3 4 5 6 Ramanathan, Subramanian P; Helenius, Jonne; Stewart, Martin P; Cattin, Cedric J; Hyman, Anthony A; Muller, Daniel J (26 January 2015). "Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement". Nature Cell Biology. 17 (2): 148–159. doi:10.1038/ncb3098. PMID   25621953. S2CID   5208968.
  12. Maddox, Amy S; Burridge, Keith (20 January 2003). "RhoA is required for cortical retraction and rigidity during mitotic cell rounding". Journal of Cell Biology. 160 (2): 255–265. doi:10.1083/jcb.200207130. PMC   2172639 . PMID   12538643.
  13. Kunda, Patricia; Pelling, Andrew E; Liu, Tao; Baum, Buzz (22 January 2008). "Moesin Controls Cortical Rigidity, Cell Rounding, and Spindle Morphogenesis during Mitosis". Current Biology. 18 (2): 91–101. doi: 10.1016/j.cub.2007.12.051 . PMID   18207738.
  14. Matthews, Helen K; Delabre, Ulysse; Rohn, Jennifer L; Guck, Jochen; Kunda, Patricia; Baum, Buzz (14 August 2012). "Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression". Developmental Cell. 23 (2): 371–383. doi:10.1016/j.devcel.2012.06.003. PMC   3763371 . PMID   22898780.
  15. 1 2 Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne (29 August 2014). "Quantification of surface tension and internal pressure generated by single mitotic cells". Scientific Reports. 4: 6213. Bibcode:2014NatSR...4E6213F. doi:10.1038/srep06213. PMC   4148660 . PMID   25169063.
  16. Sorce, B (2015). "Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement". Nature Communications. 6: 8872. Bibcode:2015NatCo...6.8872S. doi: 10.1038/ncomms9872 . hdl: 1721.1/100828 . PMID   26602832. S2CID   3175608.
  17. Dao, Vi Thuy; Dupuy, Aurélien Guy; Gavet, Olivier; Caron, Emmanuelle; de Gunzburg, Jean (15 August 2009). "Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis". Journal of Cell Science. 122 (16): 2996–3004. doi: 10.1242/jcs.041301 . PMID   19638416.
  18. Clark, Andrew G; Paluch, Ewa (21 April 2011). "Mechanics and Regulation of Cell Shape During the Cell Cycle". Cell Cycle in Development. Results and Problems in Cell Differentiation. 53: 31–77. doi:10.1007/978-3-642-19065-0_3. ISBN   978-3-642-19064-3. PMID   21630140.
  19. Toyoda*, Yusuke; Cattin*, Cedric J.; Stewart*, Martin P.; Poser, Ina; Theis, Mirko; Kurzchalia, Teymuras V.; Buchholz, Frank; Hyman, Anthony A.; Müller, Daniel J. (2 November 2017). "Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding". Nature Communications. 8 (1): 1266. Bibcode:2017NatCo...8.1266T. doi:10.1038/s41467-017-01147-6. PMC   5668354 . PMID   29097687.