Nivalenol

Last updated
Nivalenol (NIV)
Nivalenol.svg
Names
Other names
(3α,4β,7α)-12,13-epoxy-3,4,7,15-tetrahydroxy-trichothec-9-en-8-one [1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.150.573 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C15H20O7/c1-6-3-7-14(4-16,11(20)8(6)17)13(2)10(19)9(18)12(22-7)15(13)5-21-15/h3,7,9-12,16,18-20H,4-5H2,1-2H3/t7-,9-,10-,11-,12-,13-,14-,15+/m1/s1 Yes check.svgY
    Key: UKOTXHQERFPCBU-XBXCNEFVSA-N Yes check.svgY
  • InChI=1/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1 [1]
  • CC1=C[C@H]2O[C@@H]3[C@H](O)[C@@H](O)[C@@](C)([C@]34CO4)[C@@]2(CO)[C@H](O)C1=O
Properties
C15H20O7
Molar mass 312.318 g·mol−1
Appearancesolid
Density 1.6±0.1 g/cm3
Melting point 222–223 °C (432–433 °F; 495–496 K)
Boiling point 585.1±50 °C
3.54*10^5 mg/L at 25 °C
Solubility soluble in polar organic solvents
Acidity (pKa)11.78
Hazards
GHS labelling: [2] [3]
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H225, H300, H302, H310, H312, H319, H330, H332
P210, P241, P260, P262, P264, P270, P271, P280, P284, P301+P310, P302+P350, P304+P340, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
3
0
Flash point 5 °C (41 °F; 278 K) [3]
525 °C (977 °F; 798 K) [3]
20 ppm (34 mg/m3) Skin [3]
Lethal dose or concentration (LD, LC):
19.5 mg/kg (rats, oral), 38.9 mg/kg (mouse, oral)
NIOSH (US health exposure limits):
PEL (Permissible)
40 ppm (70 mg/m3) [3]
REL (Recommended)
20 ppm (34 mg/m3) [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nivalenol (NIV) is a mycotoxin of the trichothecene group. In nature it is mainly found in fungi of the Fusarium species. The Fusarium species belongs to the most prevalent mycotoxin producing fungi in the temperate regions of the northern hemisphere, therefore making them a considerable risk for the food crop production industry. [4]

Contents

The fungi are abundant in various agricultural products (cereal crops) and their further processed products (malt, beer and bread). "The Fusarium species invade and grow on crops, and may produce nivalenol under moist and cool conditions". [4]

In pigs, the symptoms observed after nivalenol exposure are "feed refusal, vomiting, gastroenteric and dermal irritation or necrosis and immunological dysfunction", [5] as well as haematotoxicity, resulting in a low leukocyte count. [5]

History

In the period of 1946 to 1963, several cases of intoxication due to the ingestion of Fusarium infected grains (scrabby grain disease) were reported in Japan, Korea and India. There have been no reports of lethal cases and only mild symptoms like nausea, vomiting, diarrhea and abdominal pain. In these incidents F. graminaerum could be isolated, which hints at a nivalenol or deoxynivalenol contamination.

In the same period two outbreaks involving over 100 cases were reported in India and China. These outbreaks were also non-lethal.

A well documented and acute outbreak in India in 1987 affected around 50,000 thousand people. Several Fusarium toxins under which nivalenol (0.03–0.1 mg/kg in 2 of 24 samples), deoxynivalenol (0.34–8.4 mg/kg in 11 of 24 samples) and acetyldeoxynivalenol (0.6–2.4 mg/kg in 4 of 24 samples) were found in rain-damaged wheat used for bread production. There were again no lethal cases and reported symptoms were abdominal pain, diarrhea, bloody stool and vomiting. These cases show that the main emerging danger of nivalenol comes from Fusarium infected cereals and is mainly via the route of digestion of uncontrolled wheat or other grains that are further processed or does enter the food chain via another route. [6]

Weaponization and other instances of nivalenol poisoning

Nivalenol as well as deoxynivalenol and T-2 toxin have been used as biological warfare agents in Laos and Cambodia as well as in Afghanistan. The Soviet Union has been alleged to have provided the mycotoxins and to have used them themselves in Afghanistan. All three compounds could be identified in the vegetation at affected sites, whereas T-2 toxin could also be found in urine and blood samples of victims. [7]

The best documented use of trichothecenes in warfare is the yellow rain controversy, a number of attacks in Southeastern Asia, Laos and Afghanistan which used a "yellow rain" as described by witnesses. The toxins were delivered as a cloud of yellow dust or droplets. An article by L. R. Ember published in 1984 in Chemical Engineering News describes the use of trichothecene mycotoxins as biological weapons in Southeast Asia in a very detailed manner, [8] covering reports of survivors, eyewitnesses, prisoners of war and Soviet informants along with information on the presence of Soviet technicians and laboratories. This led to the conclusion that these toxins have been used in Southeast Asia and Afghanistan. The Russian government however refuses to give a statement on these pieces of evidence. Furthermore, it has been shown that samples taken on the location of attacks contain these toxins, while sites that have not been attacked do not show any signs of toxins in them.

Even though it remains questionable if all witness reports are reliable sources of evidence, the symptoms recorded are typical for intoxication with trichothecenes.

There was a number of ways in which trichothecenes were weaponized, such as dispersion as aerosol, smoke, droplets or dust from aircraft, missiles, handheld devices or artillery. [9]

Safety guidelines in the food industry

In 2000 a scientific opinion on nivalenol was issued by the Scientific Committee on Food (SCF). A temporary tolerable daily intake (t-TDI) of 0–0.7 μg/kg bw per day was issued after evaluation of the general toxicity as well as the haematoxicity and the immunotoxicity. This t-TDI was reaffirmed by the SCF in 2002.

In 2010 the Japanese Food Safety Commission (FSCJ) issued a t-TDI of 0.4 μg/kg bw per day.

Between 2001 and 2011 the European Food Safety Authority (EFSA) collected data from 15774 nivalenol occurrences in 18 European countries to be assessed. This led to the establishment of a TDI of 1.2 μg/kg bw per day. Nivalenol was in this studies not found to be genotoxic, but well haematotoxic and immunotoxic. [4]

Structure and reactivity

Nivalenol as part of the family of mycotoxins has the common structure which all members of this toxin family have. This includes the basic structure of a cyclohexene and a tetrahydropyran ring connected at C6 and C11. Additionally an ethyl-group connects the tetrahydropyran at C2 and C5 and a keto group is attached at the cyclohexene at C8. The epoxide group, responsible for the reactivity for most parts, is attached at C12 and C13 in the tetrahydropyran. Only the remaining groups at positions C3, C4, C7, C15 vary for the different mycotoxins. In case of nivalenol each of the four remaining groups is a substituted hydroxyl group which add up to the reactivity in presence of hydrophilic compounds or subgroups respectively thanks to their polar characteristics. In acidic medium the keto group is capable of reacting with a proton promoting polarity and reactivity as well. But altogether the epoxide group is crucial for the reactivity of the molecule. [10]

Available forms

Nivalenol, deoxynivalenol]] and T2-toxin are the three structural and similar synthesized mycotoxins naturally appearing in fungi (e.g. Fusarium). [10]

Synthesis

Synthesis pathways of nivalenol and deoxynivalenol Synthesis nivalenol deoxynivalenol.tif
Synthesis pathways of nivalenol and deoxynivalenol

The synthesis of nivalenol is a 16 step process. It can differ in step 11 to step 14 depending on the order in which the reaction controlling trichodiene synthases TRI1, TRI13 and TRI7 are catalyzing. Farnesyl pyrophosphate is used as starting compound for the synthesis of nivalenol. Its cyclization reaction to trichodiene is catalyzed by terpene cyclase trichodiene synthase (Tri5). This reaction is followed by several oxidation reactions catalyzed by cytochrome P450 monooxygenase (encoded by TRI4). Thereby hydroxyl groups were substituted to the carbon atoms C2, C3 and C11 and one oxygen was added to C12 and C13 facilitating the formation of an epoxide group. This results in the intermediate isotrichotriol.

In a further reaction trichotriol was gained through a shift of the C11 hydroxyl group of the isotrichotriol to the C9, similar the double bond shifted from C9=C10 to C10=C11. Trichotriol reacts in a non-enzymatic cyclization reaction to its isomere isotrichodermol. In the reaction the hydroxyl group on the C2 of the cyclopentane binds to the C11 of the cyclohexene forming a tetrahydropyran ring. The shifted OH-group at C9 is lost during the reaction. An acetyltransferase (encoded by TRI101) catalyzes the acetylation of the C3 OH-group of isotrichodermol forming isotrichdermin.

Isotrichodermin is converted to 15-decalonecitrin due to a substitution (encoded by TRI11) of one hydrogen by one hydroxyl at C15 which is then acetylated under help of TRI3. The same substitution and following acetylation reactions occur at C4 again under the control of TRI13 and TRI7. TRI1 in F. sporotrichiodies further catalyzes the addition of a fourth OH-group at C8 and a fifth OH-group at C7 at which then the hydrogen is eliminated and a keto group forms.

In a last step an esterase controlled by TRI8 catalyzes the deacetylation at C3, C4 and C15 resulting in the end product nivalenol. A partly alternative synthesis can occur when the catalysts TRI1 and TRI13, TRI7 are used in opposite order. Then the addition of the hydroxyl groups at C7 and C8 controlled by TRI1 are happening with calonectrin as reactant. In this reaction 7,8-dihydroxycalonectrin is formed. It further reacts spontaneously to 3,15-acetyl-deoxynivalenol via elimination of a hydrogen and formation of a keto-group at C8. The addition of a hydroxyl group at C4 controlled by TRI13 occurs and is acetylated under the help of TRI7. This yields 3,4,15-triacetylnivalenol (3,4,15-triANIV) from which it is than again the same synthesis as described above. [9]

Mechanism of action

Nivalenol causes a change in a number of different biological pathways. The most well known and probably important, is the NF-κB pathway. NF-κB is a transcription factor that can be found in almost all human cells, and regulates the expression of its target genes by binding to specific motifs on the genomic DNA on regulatory elements. In vitro tests have shown, that nivalenol can change the expression of cytokines, which are important controller molecules of the immune system. Nivalenol induced the secretion of IL-8, a mediator of inflammation. When treated with an NF-κB inhibitor, IL-8 secretion was lowered. Another important factor influenced by nivalenol is MCP-1/CCL2, this cytokine plays a role in the mobility regulation of mononuclear leukocyte cells. Nivalenol causes CCL2 secretion to be lowered, and thus the mobility of monocytes to be reduced. This explains part of the immunosuppressive nature of nivalenol. Again, this effect is reduced by NF-κB inhibition which shows, that nivalenol and NF-κB interact to influence the cell. [11] [12]

It was shown that while deoxynivalenol induces the secretion of chemokines, which are also immunorelevant messenger molecules, nivalenol does inhibit their secretion. [13] [14] Nivalenol also upregulates the expression of proinflammatory genes in macrophages, displaying a mixed effect on different cell types. It does so even at cytotoxic levels. [15]

Another mechanism of cytotoxicity of nivalenol is the apoptotic cytotoxicity showing that nivalenol is more toxic than its often co-occurring mycotoxin partner deoxynivalenol, and does so by causing DNA damage and apoptosis. [16] Nivalenol is also known to influence human leukocyte proliferation. It has been shown that nivalenol can change proliferation rates of human leukocytes in a dose dependent manner. Lower concentrations are known to enhance leukocyte proliferation, while higher concentrations decrease proliferation in a dose dependent manner. [17]

Metabolism

Structure of de-epoxynivalenol Deepoxynivalenol.svg
Structure of de-epoxynivalenol

Nivalenol in mice is not only metabolized through the liver but also, for a lesser part through microbial detoxification in the intestines. Thereby especially the epoxide group as most toxic part of the molecule is degraded. This happens by eliminating the oxygen of the epoxide group resulting in a double carbon-carbon bond between C12 and C13. This double bond is nonpolar and very stable leading to a less reactive form of nivalenol called de-epoxynivalenol. The de-epoxinated nivalenol gained is therefore much less toxic, same as every de-epoxinated trichodiene, and can be segregated into the urine without having much toxic effects anymore (nearly non-toxic).

In the urine of tested mice and pigs 80% of the de-epoxidated compound and only 7% of the actual nivalenol were found showing a high metabolising rate of the trichodienes. [5] Thereby a low concentration of nitrogen in low proteins and urea were observed whereas the cholesterol concentration was observed to be higher than normal. This suggests that nivalenol is present and later degraded in the liver as the liver is responsible for the segregation of cholesterol into the bloodstream. The higher amount of cholesterol in the blood leads then to a higher amount of filtered cholesterol by the kidneys and eventually to an increased concentration in the urea. [10] [18]

The lowered concentration of amides is assumed to be caused in the degradation process of the reactive epoxide group. Therefore, the epoxides are often found to react with amides or amide groups by adding a hydroxyl group at a primary or secondary amine. As a consequence the epoxide group is degraded and less nitrogen is present for the synthesis of proteins or urea.

Adverse effects

Nivalenol did not yet find usage in medical treatments, and therefore it does not have known adverse effects besides the toxic effects described. It is however worth noting that it could be interesting for investigation due to its immunosuppressive effects.

Effects on animals and efficacy

As nivalenol is a mycotoxic product of certain Fusarium species it is often found in infected wheat and grain. As unprocessed wheat and grain product are often used as feed for livestock animals these are at a higher risk of nivalenol intake.

Toxicity studies in swine that received a dose of 0.05 mg nivalenol/kg body weight twice daily showed no lethal effects. Most nivalenol was secreted with the feces and did not reach the bloodstream despite the fact that there was still nivalenol upstage over the intestines after 16 hours of feeding. There were further no nivalenol metabolites found in feces or urine within the first three days. [19] After a week of exposure to 2.5 or 5 mg of nivalenol per kg of body weight twice a day, a microbiological adaptation was seen as nivalenol metabolites (de-epoxidated nivalenol) could be found in feces and urine.

In rats and mice nivalenol showed to be toxic with adverse effects of growth retardation and leukopenia already noticed at lowest doses of 0.7 mg/kg of body weight per day. Lethal doses were dependent on the route of administration/intake of nivalenol. As nivalenol is normally taken up with feed the LD50 of oral administration which is 38.9 mg/kg of body weight per day in mice and 19.5 mg/kg per day in rats can be used as standard. The LD50 of intravenous, intraperitoneal and subcutaneous (SC) is between 7 and 7.5 mg/kg bw per day. [20]

Toxicity, indications and side effects

The toxicity of nivalenol in humans is for the most parts unknown yet, but it was investigated in mice, rats and hamster cells. Thereby the toxicity was divided in the following topics: acute/subacute, subchronic, chronic and carcinogenicity, genotoxicity, developmental toxicity studies and studies on reproduction, immunotoxicity/hematotoxycity and effects on nervous system.

Acute/subacute toxicity

The oral LD50 of nivalenol was found to be 38.9 mg/kg bw in mice whereas the intraperitoneal, subcutaneous and intravenous routes of exposure gave LD50 values of 5–10 mg/kg bw. In mice already within 3 days the most deaths occurred after oral exposure through marked congestion and haemorrhage in intestine, in acute toxicity also lymphoid organs are included. Nivalenol given over time periods of 24 days in lower doses (ca. 3,5 mg/kg bw) showed significant erythropenia and slight leukopenia. [20]

Subchronic toxicity

The subchronic toxicity was tested by feeding mice with a daily dose of 0 to 3.5 mg nivalenol/ kg bw for 4 or 12 weeks. The observations after 4 weeks were reduced body weight and food consumption. The reduction in body weight can be explained by statistical decrease in organ weight in thymus, spleen and kidneys. Whereas the consumption time was less for female mice in comparison to male mice. After 12 weeks the toxin consumption resulted in reduction of relative organ weight in both males and females. Hereby only the liver was affected and no histopathological changes were observed. [20]

Chronic toxicity and carcinogenicity

Female mice were fed with different doses of nivalenol (0, 0.7, 1.4 or 3.5 mg nivalenol /kg bw) for one or two years to investigate whether nivalenol is chronic toxic and/or carcinogenic. Also during this study a decrease in body weight and feed consumption was observed. The absolute weight of both liver and kidney was decreased through the two highest doses. The mice fed for one year with nivalenol (also with the lower doses) were affected with severe leukopenia whereas the mice fed for two years had no differences in count of white blood cells. Also "no histopathological changes including tumours were found in liver, thymus, spleen, kidneys, stomach, adrenal glands, pituitary glands, ovaries, bone marrow, lymph node, brain and small intestines with or without Peyer's patch". [20] The lowest doses (0.7 mg nivalenol /kg bw) inhibited the growth and caused leukopenia. "A no observable adverse effect level (NOAEL) could not be derived from these studies. IARC (1993) concluded that there is inadequate evidence of carcinogenicity of nivalenol in experimental animals. No human data were available. The overall conclusion was that the carcinogenicity was not classifiable (group 3)". [20]

Genotoxicity

It was found that nivalenol effects the genes of Chinese hamster V79 (CHO) cells by slightly increased frequencies of chromosomal aberrations and sister chromatid exchange. The DNA was damaged in CHO cells as well as in mice. In mice (given 20 mg nivalenol /kg bw orally or 3.7 mg /kg bw ip) the DNA of kidney, bone marrow, stomach, jejunum and colon was damaged. The DNA of the thymus and liver was not effected. In organs with DNA damage no necrotic changes were found upon histopathological examination. It can be concluded that an adequate evaluation of the genotoxicity is not allowed based on the available data. [20]

Developmental toxicity and studies on reproduction

For developmental and reproduction studies pregnant mice were injected with different amounts of purified nivalenol on days 7–15 of gestation and for one additional study with mouldy rice containing nivalenol. The studies showed that the toxin is embryotoxic in mice. No evidence of teratogenicity was given. "The LOAEL in reproduction studies with nivalenol given by oral exposure was stated to be 1.4 mg/kg bw given in the feed throughout gestation and 5 mg/kg bw when given by gavage on days 7–15". [20] Data from other species and on reproductive effects in adult males and females are not provided yet. [20]

Immunotoxicity/haematotoxicity

Acute toxicity of nivalenol induces bone marrow toxicity and toxicity of lymphoid organs. Long-term exposure may result in erythropenia and leukopenia. In mice it was also observed that nivalenol increased the presence of serum IgA, "accompanied by immunopathological changes in kidneys analogous to human IgA-nephropathy". [20] The blastogenesis in cultured human lymphocytes, proliferation of human male and female lymphocytes stimulated with phytoheamagglutin and pokeweed and immunoglobulin production induced by pokeweed, are inhibited by nivalenol. The effects of nivalenol are in the same range as same doses of deoxynivalenol, whereas the T-2 toxin are 100 fold more toxic. An additive effect is gained by combination of nivalenol with T-2 toxin, 4,15-diacetoxyscirpenol or deoxynivalenol. [20]

Effects on nervous system

About the nervous system no data has been provided yet. [20]

Related Research Articles

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<span class="mw-page-title-main">T-2 mycotoxin</span> Chemical compound

T-2 mycotoxin is a trichothecene mycotoxin. It is a naturally occurring mold byproduct of Fusarium spp. fungus which is toxic to humans and other animals. The clinical condition it causes is alimentary toxic aleukia and a host of symptoms related to organs as diverse as the skin, airway, and stomach. Ingestion may come from consumption of moldy whole grains. T-2 can be absorbed through human skin. Although no significant systemic effects are expected after dermal contact in normal agricultural or residential environments, local skin effects can not be excluded. Hence, skin contact with T-2 should be limited.

<span class="mw-page-title-main">Fumonisin B1</span> Chemical compound

Fumonisin B1 is the most prevalent member of a family of toxins, known as fumonisins, produced by multiple species of Fusarium molds, such as Fusarium verticillioides, which occur mainly in maize (corn), wheat and other cereals. Fumonisin B1 contamination of maize has been reported worldwide at mg/kg levels. Human exposure occurs at levels of micrograms to milligrams per day and is greatest in regions where maize products are the dietary staple.

<span class="mw-page-title-main">Trichothecene</span> Large family of chemically related mycotoxins

The trichothecenes are a large family of chemically related mycotoxins. They are produced by various species of Fusarium, Myrothecium, Trichoderma/Podostroma, Trichothecium, Cephalosporium, Verticimonosporium, and Stachybotrys. Chemically, trichothecenes are a class of sesquiterpenes.

Fermentek Ltd. is a biotechnological company in the Atarot industrial zone of Jerusalem, Israel. It specializes in the research, development and manufacture of biologically active, natural products isolated from microorganisms as well as from other natural sources such as plants and algae.

<span class="mw-page-title-main">Zearalenone</span> Chemical compound

Zearalenone (ZEN), also known as RAL and F-2 mycotoxin, is a potent estrogenic metabolite produced by some Fusarium and Gibberella species. Specifically, the Gibberella zeae, the fungal species where zearalenone was initially detected, in its asexual/anamorph stage is known as Fusarium graminearum. Several Fusarium species produce toxic substances of considerable concern to livestock and poultry producers, namely deoxynivalenol, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone. Particularly, ZEN is produced by Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, Fusarium equiseti, Fusarium verticillioides, and Fusarium incarnatum. Zearalenone is the primary toxin that binds to estrogen receptors, causing infertility, abortion or other breeding problems, especially in swine. Often, ZEN is detected together with deoxynivalenol in contaminated samples and its toxicity needs to be considered in combination with the presence of other toxins.

<span class="mw-page-title-main">Citrinin</span> Chemical compound

Citrinin is a mycotoxin which is often found in food. It is a secondary metabolite produced by fungi that contaminates long-stored food and it can cause a variety of toxic effects, including kidney, liver and cell damage. Citrinin is mainly found in stored grains, but sometimes also in fruits and other plant products.

Patulin is an organic compound classified as a polyketide. It is named after the fungus from which it was isolated, Penicillium patulum. It is a white powder soluble in acidic water and in organic solvents. It is a lactone that is heat-stable, so it is not destroyed by pasteurization or thermal denaturation. However, stability following fermentation is lessened. It is a mycotoxin produced by a variety of molds, in particular, Aspergillus and Penicillium and Byssochlamys. Most commonly found in rotting apples, the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. In addition, patulin has been found in other foods such as grains, fruits, and vegetables. Its presence is highly regulated.

Mycotoxicology is the branch of mycology that focuses on analyzing and studying the toxins produced by fungi, known as mycotoxins. In the food industry it is important to adopt measures that keep mycotoxin levels as low as practicable, especially those that are heat-stable. These chemical compounds are the result of secondary metabolism initiated in response to specific developmental or environmental signals. This includes biological stress from the environment, such as lower nutrients or competition for those available. Under this secondary path the fungus produces a wide array of compounds in order to gain some level of advantage, such as incrementing the efficiency of metabolic processes to gain more energy from less food, or attacking other microorganisms and being able to use their remains as a food source.

<span class="mw-page-title-main">Sterigmatocystin</span> Chemical compound

Sterigmatocystin is a polyketide mycotoxin produced by certain species of Aspergillus. The toxin is naturally found in some cheeses.

<span class="mw-page-title-main">Vomitoxin</span> Fungal toxic chemical in grains

Vomitoxin, also known as deoxynivalenol (DON), is a type B trichothecene, an epoxy-sesquiterpenoid. This mycotoxin occurs predominantly in grains such as wheat, barley, oats, rye, and corn, and less often in rice, sorghum, and triticale. The occurrence of deoxynivalenol is associated primarily with Fusarium graminearum and F. culmorum, both of which are important plant pathogens which cause fusarium head blight in wheat and gibberella or fusarium ear blight in corn. The incidence of fusarium head blight is strongly associated with moisture at the time of flowering (anthesis), and the timing of rainfall, rather than the amount, is the most critical factor. However, increased amount of moisture towards harvest time has been associated with lower amount of vomitoxin in wheat grain due to leaching of toxins. Furthermore, deoxynivalenol contents are significantly affected by the susceptibility of cultivars towards Fusarium species, previous crop, tillage practices, and fungicide use. It occurs abundantly in grains in Norway due to heavy rainfall.

<span class="mw-page-title-main">Moniliformin</span> Chemical compound

Moniliformin is an unusual mycotoxin, a feed contaminant that is lethal to fowl, especially ducklings.

<span class="mw-page-title-main">Methiocarb</span> Chemical compound

Methiocarb is a carbamate pesticide which is used as an insecticide, bird repellent, acaricide and molluscicide since the 1960s. Methiocarb has contact and stomach action on mites and neurotoxic effects on molluscs. Seeds treated with methiocarb also affect birds. Other names for methiocarb are mesurol and mercaptodimethur.

Microbial toxins are toxins produced by micro-organisms, including bacteria, fungi, protozoa, dinoflagellates, and viruses. Many microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Endotoxins most commonly refer to the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) that are in the outer plasma membrane of Gram-negative bacteria. The botulinum toxin, which is primarily produced by Clostridium botulinum and less frequently by other Clostridium species, is the most toxic substance known in the world. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxins. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

<span class="mw-page-title-main">Tutin (toxin)</span> Chemical compound

Tutin is a poisonous plant derivative found in New Zealand tutu plants. It acts as a potent antagonist of the glycine receptor, and has powerful convulsant effects. It is used in scientific research into the glycine receptor. It is sometimes associated with outbreaks of toxic honey poisoning when bees feed on honeydew exudate from the sap-sucking passion vine hopper insect, when the vine hoppers have been feeding on the sap of tutu bushes. Toxic honey is a rare event and is more likely to occur when comb honey is eaten directly from a hive that has been harvesting honeydew from passionvine hoppers feeding on tutu plants.

Aflatoxin B<sub>1</sub> Chemical compound

Aflatoxin B1 is an aflatoxin produced by Aspergillus flavus and A. parasiticus. It is a very potent carcinogen with a TD50 3.2 μg/kg/day in rats. This carcinogenic potency varies across species with some, such as rats and monkeys, seemingly much more susceptible than others. Aflatoxin B1 is a common contaminant in a variety of foods including peanuts, cottonseed meal, corn, and other grains; as well as animal feeds. Aflatoxin B1 is considered the most toxic aflatoxin and it is highly implicated in hepatocellular carcinoma (HCC) in humans. In animals, aflatoxin B1 has also been shown to be mutagenic, teratogenic, and to cause immunosuppression. Several sampling and analytical methods including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), mass spectrometry, and enzyme-linked immunosorbent assay (ELISA), among others, have been used to test for aflatoxin B1 contamination in foods. According to the Food and Agriculture Organization (FAO), a division of the United Nations, the worldwide maximum tolerated levels of aflatoxin B1 was reported to be in the range of 1–20 μg/kg (or .001 ppm - 1 part-per-billion) in food, and 5–50 μg/kg (.005 ppm) in dietary cattle feed in 2003.

<span class="mw-page-title-main">Verrucarin A</span> Chemical compound

Verrucarin A is a chemical compound that belongs in the class of trichothecenes, a group of sesquiterpene toxins produced by several fungi, namely from the Fusarium species, that are responsible for infecting food grains. It was first described in 1962. Within the skeleton of the basic trichothecene structure, the olefin and epoxide are crucial for toxicity; ester functionalities and hydroxyl groups often contribute to the toxicity, thereby rendering verrucarin A as one of the most lethal examples. The mechanism of action for this class of toxins mainly inhibits protein biosynthesis by preventing peptidyl transferase activity. Although initially thought to be potentially useful as anticancer therapeutics, numerous examples of trichothecene derivatives were shown to be too toxic for clinical use.

<span class="mw-page-title-main">Ethoprophos</span> Chemical compound

Ethoprophos (or ethoprop) is an organophosphate ester with the formula C8H19O2PS2. It is a clear yellow to colourless liquid that has a characteristic mercaptan-like odour. It is used as an insecticide and nematicide and it is an acetylcholinesterase inhibitor.

<span class="mw-page-title-main">4-Ipomeanol</span> Chemical compound

4-Ipomeanol (4-IPO) is a pulmonary pre-toxin isolated from sweet potatoes infected with the fungus Fusarium solani. One of the 4-IPO metabolites is toxic to the lungs, liver and kidney in humans and animals. This metabolite can covalently bind to proteins, thereby interfering with normal cell processes.

<span class="mw-page-title-main">PR toxin</span> Chemical compound

Penicillin Roquefort toxin is a mycotoxin produced by the fungi Penicillium roqueforti. In 1973, PR toxin was first partially characterized by isolating moldy corn on which the fungi had grown. Although its lethal dose was determined shortly after the isolation of the chemical, details of its toxic effects were not fully clarified until 1982 in a study with mice, rats, anesthetized cats and preparations of isolated rat auricles.

References

  1. 1 2 "Nivalenol". Cayman Chemical. Retrieved 28 March 2018.
  2. "Nivalenol". PubChem. Retrieved 28 March 2018.
  3. 1 2 3 4 5 6 "Nivalenol" (PDF). Safety Data Sheet. Retrieved 28 March 2018.
  4. 1 2 3 "Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed". European Food Safety Authority (EFSA) Journal. 11 (6): 1–5. 2013.
  5. 1 2 3 Hedman, R.; Pettersson, H.; Lindberg, J.E. (2009). "Absorption and metabolism of nivalenol in pigs". Archiv für Tierernaehrung. 50–1 (1): 13–24. doi:10.1080/17450399709386115. PMID   9205733.
  6. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) (2013). "Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed". EFSA Journal. 11 (6): 3262–119. doi: 10.2903/j.efsa.2013.3262 .
  7. Gupta, R. C., ed. (2015). Handbook of Toxicology of Chemical Warfare Agents. Academic Press. pp. 353–369. ISBN   9780128001592.
  8. Venkataramana, M.; Chandranayaka, S.; Prakash, H. S.; Niranja, R. (2014). "na, S. (2014). Mycotoxins Relevant to Biowarfare and Their Detection". Biological Toxins and Bioterrorism: 22. doi:10.1007/978-94-007-6645-7_32-1.
  9. 1 2 3 McCormick, S. P.; Stanley, A. M.; Stover, N. A.; Alexander, N. J. (2011). "Trichothecenes: From Simple to Complex Mycotoxins". Toxins. 3 (7): 802–814. doi: 10.3390/toxins3070802 . PMC   3202860 . PMID   22069741.
  10. 1 2 3 4 Sidell, F. R.; Takafuji, E. T.; Franz, D. R. (1997). Medical Aspects of Chemical and Biological Warfare. United States Government Printing. pp. 662–664. ISBN   978-9997320919.
  11. US National Library of Medicine. "HSDB: Hazardous Substances Data Bank" . Retrieved 2018-03-23.
  12. Deshmaneand, S. L.; Kremlev, S.; Amini, S.; Sawaya, B. E. (2009). "Monocyte Chemoattractant Protein-1 (MCP-1): An Overview". Journal of Interferon & Cytokine Research. 29 (6): 313–326. doi:10.1089/jir.2008.0027. PMC   2755091 . PMID   19441883.
  13. Nagashima, H.; et al. (2012). "Environ Toxicol Pharmacol". Environmental Toxicology and Pharmacology. 34 (3): 1014–7. doi:10.1016/j.etap.2012.07.008. PMID   22964157.
  14. Deshmane, S. L.; et al. (2009). "Monocyte chemoattractant protein-1 (MCP-1): an overview". Journal of Interferon & Cytokine Research. 29 (6): 313–326. doi:10.1089/jir.2008.0027. PMC   2755091 . PMID   19441883.
  15. Sugita-Konishi, Y.; Pestka, J. J. (2001). "Differential upregulation of TNF-alpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model". Toxicol Environ Health A. 64 (8): 619–36. doi:10.1080/152873901753246223. PMID   11766169. S2CID   104946.
  16. Minervini, F.; et al. (2004). "Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line". Toxicol in Vitro. 18 (1): 21–8. doi:10.1016/S0887-2333(03)00130-9. PMID   14630058.
  17. Taranu, I.; et al. (2010). "Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins". Arch Anim Nutr. 64 (5): 383–93. doi:10.1080/1745039X.2010.492140. PMID   21114234. S2CID   20521758.
  18. Sundstøl Eriksen, G.; Pettersson, H.; Lundh, T. (2004). "Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites". Food and Chemical Toxicology. 42 (4): 619–624. doi:10.1016/j.fct.2003.11.006. PMID   15019186.
  19. Pettersson, H.; Hedman, R. (1997). "Toxicity and metabolism of nivalenol in farm animals". Cereal Research Communications. 25–3 (3). Akadémiai Kiadó: 423–427. doi:10.1007/BF03543746.
  20. 1 2 3 4 5 6 7 8 9 10 11 "Opinion of the Scientific Committee on Food on Fusarium Toxins Part 41: Nivalenol" (PDF). Scientific Committee on Food: 2–6. 2000.