PTPRC

Last updated
PTPRC
Protein PTPRC PDB 1ygr.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PTPRC , B220, CD45, CD45R, GP180, L-CA, LCA, LY5, T200, protein tyrosine phosphatase, receptor type C, protein tyrosine phosphatase receptor type C
External IDs OMIM: 151460 MGI: 97810 HomoloGene: 2126 GeneCards: PTPRC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001267798
NM_002838
NM_080921
NM_080922

NM_001111316
NM_001268286
NM_011210

RefSeq (protein)

NP_001254727
NP_002829
NP_563578
NP_563578.2
NP_002829.3

Contents

NP_001104786
NP_001255215
NP_035340

Location (UCSC) Chr 1: 198.64 – 198.76 Mb Chr 1: 137.99 – 138.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein tyrosine phosphatase, receptor type, C also known as PTPRC is an enzyme that, in humans, is encoded by the PTPRC gene. [5] PTPRC is also known as CD45 antigen (CD stands for cluster of differentiation), which was originally called leukocyte common antigen (LCA). [6]

Function

The protein product of this gene, best known as CD45, is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. CD45 contains an extracellular domain, a single transmembrane segment, and two tandem intracytoplasmic catalytic domains, and thus belongs to the receptor type PTP family.[ citation needed ]

CD45 is a type I transmembrane protein that is present in various isoforms on all differentiated hematopoietic cells (except erythrocytes and plasma cells). [7] CD45 has been shown to be an essential regulator of T- and B-cell antigen receptor signalling. It functions through either direct interaction with components of the antigen receptor complexes via its extracellular domain (a form of co-stimulation), or by activating various Src family kinases required for the antigen receptor signaling via its cytoplasmic domain. CD45 also suppresses JAK kinases, and so functions as a negative regulator of cytokine receptor signaling.[ citation needed ]

Many alternatively spliced transcripts variants of this gene, which encode distinct isoforms, have been reported. [6] Antibodies against the different isoforms of CD45 are used in routine immunohistochemistry to differentiate between immune cell types, as well as to differentiate between histological sections from lymphomas and carcinomas. [8]

Isoforms

The CD45 protein family consists of multiple members that are all products of a single complex gene. This gene contains 34 exons, producing a massive protein with extracellular and cytoplasmic domains that are both unusually large. Exons 4, 5, and 6 (corresponding to protein regions A, B, and C) are alternatively spliced to generate up to eight different protein products featuring combinations of zero, one, two, or all three exons. [9]

CD45's large extracellular domain is highly glycosylated, and these eight isoforms allow wide variation in the structure of its side chains. The isoforms affect the protein's N-terminal region, which extends linearly out from the cell and bears the O-linked glycan chains. [ citation needed ]

CD45 isoforms show cell-type and differentiation-stage specific expression, a pattern which is quite well conserved in mammals. [10] These isoforms are often used as markers that identify and distinguish between different types of immune cells.

Naive T lymphocytes are typically positive for CD45RA, which includes only the A protein region. Activated and memory T lymphocytes express CD45RO, the shortest CD45 isoform, which lacks all three of the A, B, and C regions. This shortest isoform facilitates T cell activation.[ citation needed ]

CD45R (also known as CD45RABC) contains all three possible exons. It is the longest protein and migrates at 200 kDa when isolated from T cells. B cells also express CD45R with heavier glycosylation, bringing the molecular weight to 220 kDa, hence the name B220 (B cell isoform of 220 kDa).

Interactions

PTPRC has been shown to interact with:

CD45 has been recently shown to interact with the HCMV UL11 protein. This interaction results in functional paralysis of T cells. [18] In addition, CD45 was shown to be the target of the species D adenovirus 19a E3/49K protein to inhibit the activation of NK and T cells. [19]

Clinical importance

CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells, but CD45 positioning within lipid rafts is modified during their oncogenic transformation to acute myeloid leukemia. CD45 colocalizes with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells.[ citation needed ]

Use as a congenic marker

There are two identifiable alleles of CD45 in mice: CD45.1 (Ly5.1 historically) and CD45.2 (Ly5.2 historically). [20] These two types of CD45 are believed to be functionally identical. As such, they are routinely used in scientific research to allow identification of cells. For instance, leukocytes can be transferred from a CD45.1 donor mouse, into a CD45.2 host mouse, and can be subsequently identified due to their expression of CD45.1. This technique is also routinely used when generating chimeras. An alternative system is the use of CD90 (Thy1) alleles, which CD90.1/CD90.2 system is used in the same manner as the CD45.1/CD45.2 system.[ citation needed ]

In 2016 a new knock-in mouse was generated on the C57BL/6 background to be a perfect congenic strain. [21] This mouse, dubbed the CD45.1STEM mouse, differs from the C57BL/6 strain by a single base pair resulting in a single amino acid change that confers the difference in reactivity by the anti-CD45.1 and anti-CD45.2 antibodies. This strain was designed for competitive bone marrow transplantation assays and demonstrated perfect equivalence, unlike the previous standard, the "SJL" mouse, more formally known as Pep Boy. [22]

Related Research Articles

<span class="mw-page-title-main">Lck</span> Lymphocyte protein

Lck is a 56 kDa protein that is found inside specialized cells of the immune system called lymphocytes. The Lck is a member of Src kinase family (SFK), it is important for the activation of the T-cell receptor signaling in both naive T cells and effector T cells. The role of the Lck is less prominent in the activation or in the maintenance of memory CD8 T cells in comparison to CD4 T cells. In addition, the role of the lck varies among the memory T cells subsets. It seems that in mice, in the effector memory T cells (TEM) population, more than 50% of lck is present in a constitutively active conformation, whereas, only less than 20% of lck is present as active form of lck. These differences are due to differential regulation by SH2 domain–containing phosphatase-1 (Shp-1) and C-terminal Src kinase.

<span class="mw-page-title-main">Receptor tyrosine kinase</span> Class of enzymes

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase proteins. Receptor tyrosine kinases have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Mutations in receptor tyrosine kinases lead to activation of a series of signalling cascades which have numerous effects on protein expression. Receptor tyrosine kinases are part of the larger family of protein tyrosine kinases, encompassing the receptor tyrosine kinase proteins which contain a transmembrane domain, as well as the non-receptor tyrosine kinases which do not possess transmembrane domains.

<span class="mw-page-title-main">CD22</span> Lectin molecule

CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. Generally speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the development of autoimmune diseases.

<span class="mw-page-title-main">Lymphocyte cytosolic protein 2</span> Protein-coding gene in the species Homo sapiens

Lymphocyte cytosolic protein 2, also known as LCP2 or SLP-76, is a signal-transducing adaptor protein expressed in T cells and myeloid cells and is important in the signaling of T-cell receptors (TCRs). As an adaptor protein, SLP-76 does not have catalytic functions, primarily binding other signaling proteins to form larger signaling complexes. It is a key component of the signaling pathways of receptors with immunoreceptor tyrosine-based activation motifs (ITAMs) such as T-cell receptors, its precursors, and receptors for the Fc regions of certain antibodies. SLP-76 is expressed in T-cells and related lymphocytes like natural killer cells.

<span class="mw-page-title-main">RET proto-oncogene</span> Mammalian protein

The RETproto-oncogene encodes a receptor tyrosine kinase for members of the glial cell line-derived neurotrophic factor (GDNF) family of extracellular signalling molecules. RET loss of function mutations are associated with the development of Hirschsprung's disease, while gain of function mutations are associated with the development of various types of human cancer, including medullary thyroid carcinoma, multiple endocrine neoplasias type 2A and 2B, pheochromocytoma and parathyroid hyperplasia.

<span class="mw-page-title-main">PTPN22</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a cytoplasmatic protein encoded by gene PTPN22 and a member of PEST family of protein tyrosine phosphatases. This protein is also called "PEST-domain Enriched Phosphatase" ("PEP") or "Lymphoid phosphatase" ("LYP"). The name LYP is used strictly for the human protein encoded by PTPN22, but the name PEP is used only for its mouse homolog. However, both proteins have similar biological functions and show 70% identity in amino acid sequence. PTPN22 functions as a negative regulator of T cell receptor (TCR) signaling, which maintains homeostasis of T cell compartment.

<span class="mw-page-title-main">PTPRA</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase alpha is an enzyme that in humans is encoded by the PTPRA gene.

<span class="mw-page-title-main">PTPRF</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase F is an enzyme that, in humans, is encoded by the PTPRF gene.

<span class="mw-page-title-main">CD244</span> Protein found in humans

CD244 also known as 2B4 or SLAMF4 is a protein that in humans is encoded by the CD244 gene.

<span class="mw-page-title-main">PTPRE</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase epsilon is an enzyme that in humans is encoded by the PTPRE gene.

<span class="mw-page-title-main">PTPRJ</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase eta is an enzyme that in humans is encoded by the PTPRJ gene.

<span class="mw-page-title-main">PTPN7</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase non-receptor type 7 is an enzyme that in humans is encoded by the PTPN7 gene.

<span class="mw-page-title-main">LILRB4</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily B member 4 is a protein that in humans is encoded by the LILRB4 gene.

<span class="mw-page-title-main">PTPRD</span> Protein-coding gene in humans

Receptor-type tyrosine-protein phosphatase delta is an enzyme that, in humans, is encoded by the PTPRD gene.

<span class="mw-page-title-main">Leukocyte receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Leukocyte receptor tyrosine kinase is an enzyme that in humans is encoded by the LTK gene.

<span class="mw-page-title-main">PTPRCAP</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase receptor type C-associated protein is an enzyme that in humans is encoded by the PTPRCAP gene.

<span class="mw-page-title-main">CD79A</span> Mammalian protein found in Homo sapiens

Cluster of differentiation CD79A also known as B-cell antigen receptor complex-associated protein alpha chain and MB-1 membrane glycoprotein, is a protein that in humans is encoded by the CD79A gene.

<span class="mw-page-title-main">CD79B</span> Mammalian protein found in Homo sapiens

CD79b molecule, immunoglobulin-associated beta, also known as CD79B, is a human gene.

<span class="mw-page-title-main">HNRNPLL</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein L-like is a protein that in humans is encoded by the HNRNPLL gene.

Non-catalytic tyrosine-phosphorylated receptors (NTRs), also called immunoreceptors or Src-family kinase-dependent receptors, are a group of cell surface receptors expressed by leukocytes that are important for cell migration and the recognition of abnormal cells or structures and the initiation of an immune response. These transmembrane receptors are not grouped into the NTR family based on sequence homology, but because they share a conserved signalling pathway utilizing the same signalling motifs. A signaling cascade is initiated when the receptors bind their respective ligand resulting in cell activation. For that tyrosine residues in the cytoplasmic tail of the receptors have to be phosphorylated, hence the receptors are referred to as tyrosine-phosphorylated receptors. They are called non-catalytic receptors, as the receptors have no intrinsic tyrosine kinase activity and cannot phosphorylate their own tyrosine residues. Phosphorylation is mediated by additionally recruited kinases. A prominent member of this receptor family is the T-cell receptor.

References

  1. 1 2 3 ENSG00000262418 GRCh38: Ensembl release 89: ENSG00000081237, ENSG00000262418 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026395 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, et al. (September 1990). "Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain". Proceedings of the National Academy of Sciences of the United States of America. 87 (18): 7000–4. Bibcode:1990PNAS...87.7000K. doi: 10.1073/pnas.87.18.7000 . PMC   54670 . PMID   2169617.
  6. 1 2 "Entrez Gene: PTPRC protein tyrosine phosphatase, receptor type, C".
  7. Holmes N (February 2006). "CD45: all is not yet crystal clear". Immunology. 117 (2): 145–55. doi:10.1111/j.1365-2567.2005.02265.x. PMC   1782222 . PMID   16423050.
  8. Leong AS, Cooper K, Leong FJ (2003). Manual of Diagnostic Cytology (2nd ed.). Greenwich Medical Media, Ltd. pp. 121–124. ISBN   1-84110-100-1.
  9. "Mini-review: CD45 characterization and Isoforms". Bio-Rad Laboratories, Inc.
  10. Hermiston ML, Xu Z, Weiss A (2003). "CD45: a critical regulator of signaling thresholds in immune cells". Annual Review of Immunology. 21: 107–37. doi:10.1146/annurev.immunol.21.120601.140946. PMID   12414720.
  11. Arendt CW, Ostergaard HL (May 1997). "Identification of the CD45-associated 116-kDa and 80-kDa proteins as the alpha- and beta-subunits of alpha-glucosidase II". The Journal of Biological Chemistry. 272 (20): 13117–25. doi: 10.1074/jbc.272.20.13117 . PMID   9148925.
  12. Baldwin TA, Gogela-Spehar M, Ostergaard HL (October 2000). "Specific isoforms of the resident endoplasmic reticulum protein glucosidase II associate with the CD45 protein-tyrosine phosphatase via a lectin-like interaction". The Journal of Biological Chemistry. 275 (41): 32071–6. doi: 10.1074/jbc.M003088200 . PMID   10921916.
  13. Baldwin TA, Ostergaard HL (October 2001). "Developmentally regulated changes in glucosidase II association with, and carbohydrate content of, the protein tyrosine phosphatase CD45". Journal of Immunology. 167 (7): 3829–35. doi: 10.4049/jimmunol.167.7.3829 . PMID   11564800.
  14. Brown VK, Ogle EW, Burkhardt AL, Rowley RB, Bolen JB, Justement LB (June 1994). "Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45". The Journal of Biological Chemistry. 269 (25): 17238–44. doi: 10.1016/S0021-9258(17)32545-0 . PMID   7516335.
  15. Koretzky GA, Kohmetscher M, Ross S (April 1993). "CD45-associated kinase activity requires lck but not T cell receptor expression in the Jurkat T cell line". The Journal of Biological Chemistry. 268 (12): 8958–64. doi: 10.1016/S0021-9258(18)52965-3 . PMID   8473339.
  16. Ng DH, Watts JD, Aebersold R, Johnson P (January 1996). "Demonstration of a direct interaction between p56lck and the cytoplasmic domain of CD45 in vitro". The Journal of Biological Chemistry. 271 (3): 1295–300. doi: 10.1074/jbc.271.3.1295 . PMID   8576115.
  17. Wu L, Fu J, Shen SH (April 2002). "SKAP55 coupled with CD45 positively regulates T-cell receptor-mediated gene transcription". Molecular and Cellular Biology. 22 (8): 2673–86. doi:10.1128/mcb.22.8.2673-2686.2002. PMC   133720 . PMID   11909961.
  18. Gabaev I, Steinbrück L, Pokoyski C, Pich A, Stanton RJ, Schwinzer R, et al. (December 2011). "The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells". PLOS Pathogens. 7 (12): e1002432. doi: 10.1371/journal.ppat.1002432 . PMC   3234252 . PMID   22174689.
  19. Windheim M, Southcombe JH, Kremmer E, Chaplin L, Urlaub D, Falk CS, Claus M, Mihm J, Braithwaite M, Dennehy K, Renz H, Sester M, Watzl C, Burgert HG. A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4884-93.
  20. Mobraaten LE (1994). "JAX NOTES: Ly5 Gene Nomenclature, C57BL/6J and SJL/J - A History of Change". The Jackson Laboratory. Archived from the original on 2015-01-08. Retrieved 2015-01-08.
  21. Mercier, Francois E.; Sykes, David B.; Scadden, David T. (14 June 2016). "Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1(STEM) Mouse". Stem Cell Reports. 6 (6): 985–992. doi:10.1016/j.stemcr.2016.04.010. ISSN   2213-6711. PMC   4911492 . PMID   27185283.
  22. "002014 - B6.SJL-Ptprc Pepc/BoyJ". www.jax.org. Retrieved 2020-10-11.

Bibliography