Triptolide

Last updated
Triptolide
Triptolide.svg
Names
Preferred IUPAC name
(3bS,4aS,5aS,6R,6aR,7aS,7bS,8aS,9bS)-6-Hydroxy-8b-methyl-6a-(propan-2-yl)-3b,4,4a,5a,6,6a,7a,7b,8a,8b,9,10-dodecahydrotris(oxireno)[2′,3′:4b,5;2′′,3′′:6,7;2′′′,3′′′:8a,9]phenanthro[1,2-c]furan-1(3H)-one
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.208.723 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C20H24O6/c1-8(2)18-13(25-18)14-20(26-14)17(3)5-4-9-10(7-23-15(9)21)11(17)6-12-19(20,24-12)16(18)22/h8,11-14,16,22H,4-7H2,1-3H3/t11-,12-,13-,14-,16+,17-,18-,19+,20+/m0/s1
    Key: DFBIRQPKNDILPW-CIVMWXNOSA-N
  • CC(C)[C@@]12[C@@H](O1)[C@H]3[C@@]4(O3)[C@]5(CCC6=C([C@@H]5C[C@H]7[C@]4([C@@H]2O)O7)COC6=O)C
Properties
C20H24O6
Molar mass 360.406 g·mol−1
0.017 mg/mL [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Triptolide is a diterpenoid epoxide which is produced by the thunder god vine, Tripterygium wilfordii . It has in vitro and in vivo activities against mouse models of polycystic kidney disease [2] and pancreatic cancer, but its physical properties [3] and severe toxicity [4] limit its therapeutic potential. Consequently, a synthetic water-soluble prodrug, minnelide, is being studied clinically instead. [3] [5]

Contents

Triptolide is a component of ContraPest, a contraceptive pest control liquid used to reduce rat populations in the United States.

Mechanism of action

Several putative target proteins of triptolide have been reported, including polycystin-2, [6] ADAM10, [7] DCTPP1, [8] TAB1, [9] and XPB. [10] [11] Multiple triptolide-resistant mutations exist in XPB (ERCC3) and its partner protein GTF2H4. [12] However, no triptolide-resistant mutations were found in polycystin-2, ADAM10, DCTPP1 and TAB1. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide, and the XPB-C342T mutant rendered the T7115 cell line nearly completely resistant to triptolide. [10] The level of resistance conferred by the C342T mutation is about 100-fold higher than the most triptolide-resistant mutants previously identified. [12] Together, these results validate XPB as a target responsible for the antiproliferative activity of triptolide. The disruption of super-enhancer networks has also been suggested as a mechanism of action. [13]

Water-soluble prodrugs

Minnelide is a more water-soluble synthetic prodrug of triptolide which is converted to triptolide in vivo . [3] [14] In a preclinical mouse model of pancreatic cancer, it was "even more effective than gemcitabine". Its Phase II clinical trials are expected to conclude in February 2019. [15]

Minnelide Minnelide structure.png
Minnelide

Glutriptolide, a glucose conjugate of triptolide with better solubility and lower toxicity, did not inhibit XPB activity in vitro, but exhibited tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. [16] A second generation glutriptolide has been recently reported for targeting hypoxic cancer cells with increased glucose transporter expression. [17]

Related Research Articles

<i>Tripterygium wilfordii</i> Species of flowering plant

Tripterygium wilfordii, or léi gōng téng (Mandarin), sometimes called thunder god vine but more properly translated thunder duke vine, is a vine used in traditional Chinese medicine.

<span class="mw-page-title-main">Endostatin</span>

Endostatin is a naturally occurring, 20-kDa C-terminal fragment derived from type XVIII collagen. It is reported to serve as an anti-angiogenic agent, similar to angiostatin and thrombospondin.

<span class="mw-page-title-main">XPB</span> Mammalian protein found in Homo sapiens

XPB is an ATP-dependent DNA helicase in humans that is a part of the TFIIH transcription factor complex.

Transcription factor II H (TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFIIH in 1992.

<span class="mw-page-title-main">Heparin-binding EGF-like growth factor</span> Protein-coding gene in the species Homo sapiens

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of proteins that in humans is encoded by the HBEGF gene.

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cyclin-dependent kinase 7</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 7, or cell division protein kinase 7, is an enzyme that in humans is encoded by the CDK7 gene.

<span class="mw-page-title-main">PDX1</span> A protein involved in the pancreas and duodenum differentiation

PDX1, also known as insulin promoter factor 1, is a transcription factor in the ParaHox gene cluster. In vertebrates, Pdx1 is necessary for pancreatic development, including β-cell maturation, and duodenal differentiation. In humans this protein is encoded by the PDX1 gene, which was formerly known as IPF1. The gene was originally identified in the clawed frog Xenopus laevis and is present widely across the evolutionary diversity of bilaterian animals, although it has been lost in evolution in arthropods and nematodes. Despite the gene name being Pdx1, there is no Pdx2 gene in most animals; single-copy Pdx1 orthologs have been identified in all mammals. Coelacanth and cartilaginous fish are, so far, the only vertebrates shown to have two Pdx genes, Pdx1 and Pdx2.

<span class="mw-page-title-main">Polycystin 2</span> Protein and coding gene in humans

Polycystin-2 is a protein that in humans is encoded by the PKD2 gene.

<span class="mw-page-title-main">TNK2</span> Protein-coding gene in the species Homo sapiens

Activated CDC42 kinase 1, also known as ACK1, is an enzyme that in humans is encoded by the TNK2 gene. TNK2 gene encodes a non-receptor tyrosine kinase, ACK1, that binds to multiple receptor tyrosine kinases e.g. EGFR, MERTK, AXL, HER2 and insulin receptor (IR). ACK1 also interacts with Cdc42Hs in its GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activity of Cdc42Hs. This binding is mediated by a unique sequence of 47 amino acids C-terminal to an SH3 domain. The protein may be involved in a regulatory mechanism that sustains the GTP-bound active form of Cdc42Hs and which is directly linked to a tyrosine phosphorylation signal transduction pathway. Several alternatively spliced transcript variants have been identified from this gene, but the full-length nature of only two transcript variants has been determined.

<span class="mw-page-title-main">GTF2H1</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIH subunit 1 is a protein that in humans is encoded by the GTF2H1 gene.

<span class="mw-page-title-main">PKD2L1</span> Protein-coding gene in the species Homo sapiens

Polycystic kidney disease 2-like 1 protein also known as transient receptor potential polycystic 2 is a protein that in humans is encoded by the PKD2L1 gene.

<span class="mw-page-title-main">Enzalutamide</span> Antiandrogen medication used in treatment of prostate cancer

Enzalutamide, sold under the brand name Xtandi, is a nonsteroidal antiandrogen (NSAA) medication which is used in the treatment of prostate cancer. It is indicated for use in conjunction with castration in the treatment of metastatic castration-resistant prostate cancer (mCRPC), nonmetastatic castration-resistant prostate cancer, and metastatic castration-sensitive prostate cancer (mCSPC). It is taken by mouth.

mir-22

In molecular biology mir-22 microRNA is a short RNA molecule. MicroRNAs are an abundant class of molecules, approximately 22 nucleotides in length, which can post-transcriptionally regulate gene expression by binding to the 3' UTR of mRNAs expressed in a cell.

<span class="mw-page-title-main">KLF15</span> Protein-coding gene in the species Homo sapiens

Krüppel-like factor 15 is a protein that in humans is encoded by the KLF15 gene in the Krüppel-like factor family. Its former designation KKLF stands for kidney-enriched Krüppel-like factor.

<span class="mw-page-title-main">Kinesin-like protein KIF11</span> Protein-coding gene in the species Homo sapiens

Kinesin-like protein KIF11 is a molecular motor protein that is essential in mitosis. In humans it is coded for by the gene KIF11. Kinesin-like protein KIF11 is a member of the kinesin superfamily, which are nanomotors that move along microtubule tracks in the cell. Named from studies in the early days of discovery, it is also known as Kinesin-5, or as BimC, Eg5 or N-2, based on the founding members of this kinesin family.

<span class="mw-page-title-main">Epoxide hydrolase 2</span> Protein-coding gene in the species Homo sapiens

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that in humans is encoded by the EPHX2 gene. sEH is a member of the epoxide hydrolase family. This enzyme, found in both the cytosol and peroxisomes, binds to specific epoxides and converts them to the corresponding diols. A different region of this protein also has lipid-phosphate phosphatase activity. Mutations in the EPHX2 gene have been associated with familial hypercholesterolemia.

EPI-001 is the first inhibitor of the androgen receptor amino-terminal domain. The single stereoisomer of EPI-001, EPI-002, is a first-in-class drug that the USAN council assigned a new stem class "-aniten" and the generic name "ralaniten". This distinguishes the anitens novel molecular mechanism from anti androgens that bind the C-terminus ligand-binding domain and have the stem class "lutamide". EPI-001 and its stereoisomers and analogues were discovered by Marianne Sadar and Raymond Andersen, who co-founded the pharmaceutical company ESSA Pharma Inc for the clinical development of anitens for the treatment of castration-resistant prostate cancer (CRPC).

Small molecule drug conjugates or SMDCs are built with three modules: a targeting ligand, a linker and a drug payload. The targeting ligands consist of low molecular weight, high-affinity ligands that are precisely linked to potent drugs. The linkers are designed to be stable in the bloodstream and then release the active drug from the targeting ligand when the SMDC is taken up by the diseased cell. The drug payloads are highly active molecules that are too toxic to be administered in their untargeted forms at therapeutic dose levels. This modular approach allows varying targeting ligands, linker systems and drug payloads and generate SMDCs for different diseases. The most advanced SMDC is vintafolide, a derivative of the anti-mitotic chemotherapy drug vinblastine which is chemically linked to folic acid. Potent, bioactive natural products like triptolide that inhibit mammalian transcription has been recently reported as a glucose conjugate for targeting hypoxic cancer cells with increased glucose transporter expression.

<span class="mw-page-title-main">Tellimagrandin I</span> Chemical compound

Tellimagrandin I is an ellagitannin found in plants, such as Cornus canadensis, Eucalyptus globulus, Melaleuca styphelioides, Rosa rugosa, and walnut. It is composed of two galloyl and one hexahydroxydiphenyl groups bound to a glucose residue. It differs from Tellimagrandin II only by a hydroxyl group instead of a third galloyl group. It is also structurally similar to punigluconin and pedunculagin, two more ellagitannin monomers.

References

  1. Patil, Satish; Lis, Lev G.; Schumacher, Robert J.; Norris, Beverly J.; Morgan, Monique L.; Cuellar, Rebecca A. D.; Blazar, Bruce R.; Suryanarayanan, Raj; Gurvich, Vadim J.; Georg, Gunda I. (10 December 2015). "Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts". Journal of Medicinal Chemistry. 58 (23): 9334–9344. doi:10.1021/acs.jmedchem.5b01329. PMC   4678411 . PMID   26596892.
  2. Leuenroth, Stephanie (2007). "Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease". PNAS. 104 (11): 4389–4394. Bibcode:2007PNAS..104.4389L. doi: 10.1073/pnas.0700499104 . PMC   1838612 . PMID   17360534.
  3. 1 2 3 Chugh, Rohit (2012). "A Preclinical Evaluation of Minnelide as a Therapeutic Agent Against Pancreatic Cancer". Science Translational Medicine. 4 (156): 156ra139. doi:10.1126/scitranslmed.3004334. PMC   3656604 . PMID   23076356.
  4. Liu Q. (2011). "Triptolide and its expanding multiple pharmacological functions". International Immunopharmacology. 11 (3): 377–383. doi:10.1016/j.intimp.2011.01.012. PMID   21255694.
  5. "Study of Minnelide in Patients With Advanced GI Tumors" . Retrieved 6 October 2016.
  6. S. J. Leuenroth, D. Okuhara, J. D. Shotwell, G. S. Markowitz, Z. Yu, S. Somlo, C. M. Crews, Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci U S A 2007, 104, 4389-4394;
  7. R. Soundararajan, R. Sayat, G. S. Robertson, P. A. Marignani,Triptolide: An inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells. Cancer Biol Ther 2009, 8, 2054-2062;
  8. T. W. Corson, H. Cavga, N. Aberle, C. M. Crews, Triptolide directly inhibits dCTP pyrophosphatase. ChemBioChem 2011, 12, 1767-1773;
  9. Y. Lu, Y. Zhang, L. Li, X. Feng, S. Ding, W.Zheng, J. Li, P. Shen,TAB1: A Target of Triptolide in Macrophages. Chem. Biol. 2014, 21, 246 – 256.
  10. 1 2 Q. L. He, D. V. Titov, J. Li, M. Tan, Z. Ye, Y. Zhao, D. Romo, and J. O. Liu. Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide. Angew. Chem. Int. Ed. 2015, 54, 1859 –1863
  11. D. V. Titov, B. Gilman, Q. L.He, S. Bhat,W. K. Low, Y. Dang,M.Smeaton, A. L. Demain, P. S. Miller, J. F. Kugel, J. A. Goodrich,J. O. Liu, XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat. Chem. Biol. 2011, 7, 182 – 188.
  12. 1 2 Y. Smurnyy, M. Cai, H. Wu, E. McWhinnie, J. A. Tallarico, Y.Yang, Y. Feng, DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat. Chem. Biol. 2014, 10, 623 – 625
  13. Noel, Pawan; Hussein, Shaimaa; Ng, Serina; Antal, Corina E.; Lin, Wei; Rodela, Emily; Delgado, Priscilla; Naveed, Sanna; Downes, Michael; Lin, Yin; Evans, Ronald M.; Von Hoff, Daniel D.; Han, Haiyong (9 November 2020). "Triptolide targets super-enhancer networks in pancreatic cancer cells and cancer-associated fibroblasts". Oncogenesis. 9 (11): 100. doi: 10.1038/s41389-020-00285-9 . PMC   7653036 . PMID   33168807.
  14. Thunder God Vine Drug Zaps Pancreatic Cancer. GenEng. 2012
  15. "A Phase II, International Open Label Trial of Minnelide in Patients With Refractory Pancreatic Cancer". ClinicalTrials.gov. Retrieved 13 March 2018.
  16. He, Qing-Li; Minn, Il; Wang, Qiaoling; Xu, Peng; Head, Sarah A; Datan, Emmanuel; Yu, Biao; Pomper, Martin G; Liu, Jun O (2016). "Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation". Angewandte Chemie. 128 (39): 12214. Bibcode:2016AngCh.12812214H. doi:10.1002/ange.201606121.
  17. Datan E, Minn I, Peng X, He QL, Ahn H, Yu B, Pomper MG, Liu JO (2020). "A Glucose-Triptolide Conjugate Selectively Targets Cancer Cells under Hypoxia". iScience. 23 (9): 101536. Bibcode:2020iSci...23j1536D. doi: 10.1016/j.isci.2020.101536 . PMC   7509213 . PMID   33083765.