Walker motifs

Last updated

P-loop containing nucleoside triphosphate hydrolase
Identifiers
Symbol?
InterPro IPR027417

The Walker A and Walker B motifs are protein sequence motifs, known to have highly conserved three-dimensional structures. These were first reported in ATP-binding proteins by Walker and co-workers in 1982. [1]

Contents

Of the two motifs, the A motif is the main "P-loop" responsible for binding phosphate, while the B motif is a much less conserved downstream region. The P-loop is best known for its presence in ATP- and GTP-binding proteins, and is also found in a variety of proteins with phosphorylated substrates. Major lineages include: [2] [3] [4] [5]

Walker A motif

Alignment of the H-Ras mutant A59G mutants in complex with GppNHp (green cartoon) and GDP (cyan cartoon). The P-loop main chain is shown in red, the Mg ion as green sphere and the side chains of the amino acids K16 and S17 are shown as sticks. Ras-P-loop.png
Alignment of the H-Ras mutant A59G mutants in complex with GppNHp (green cartoon) and GDP (cyan cartoon). The P-loop main chain is shown in red, the Mg ion as green sphere and the side chains of the amino acids K16 and S17 are shown as sticks.

Walker A motif, also known as the Walker loop, or P-loop, or phosphate-binding loop, is a motif in proteins that is associated with phosphate binding. The motif has the pattern G-x(4)-GK-[TS], where G, K, T and S denote glycine, lysine, threonine and serine residues respectively, and x denotes any amino acid. It is present in many ATP or GTP utilizing proteins; it is the β phosphate of the nucleotide that is bound. The lysine (K) residue in the Walker A motif, together with the main chain NH atoms, are crucial for nucleotide-binding. [6] It is a glycine-rich loop preceded by a beta strand and followed by an alpha helix; these features are typically part of an α/β domain with four strands sandwiched between two helices on each side. The phosphate groups of the nucleotide are also coordinated to a divalent cation such as a magnesium, calcium, or manganese(II) ion. [7]

Apart from the conserved lysine, a feature of the P-loop used in phosphate binding is a compound LRLR nest [8] comprising the four residues xxGK, as above, whose main chain atoms form a phosphate-sized concavity with the NH groups pointing inwards. The synthetic hexapeptide SGAGKT has been shown [9] to bind inorganic phosphate strongly; since such a short peptide does not form an alpha helix, this suggests that it is the nest, rather than being at the N-terminus of a helix, that is the main phosphate binding feature.

Upon nucleotide hydrolysis the loop does not significantly change the protein conformation, but stays bound to the remaining phosphate groups. Walker motif A-binding has been shown to cause structural changes in the bound nucleotide, along the line of the induced fit model of enzyme binding.[ citation needed ]

Similar folds

PTPs (protein tyrosine phosphatases) that catalyse the hydrolysis of an inorganic phosphate from a phosphotyrosine residue (the reverse of a tyrosine kinase reaction) contain a motif which folds into a P-loop-like structure with an arginine in the place of the conserved lysine. The conserved sequence of this motif is C-x(5)-R-[ST], where C and R denote cysteine and arginine residues respectively. [10]

Pyridoxal phosphate (PLP) utilizing enzymes such as cysteine synthase have also been said to resemble a P-loop.[ citation needed ]

A-loop

The A-loop (aromatic residue interacting with the adenine ring of ATP) refers to conserved aromatic amino acids, essential for ATP-binding, found in about 25 amino acids upstream of the Walker A motif in a subset of P-loop proteins. [11]

Walker B motif

Walker B motif is a motif in most P-loop proteins situated well downstream of the A-motif. The consensus sequence of this motif was reported to be [RK]-x(3)-G-x(3)-LhhhD, where R, K, G, L and D denote arginine, lysine, glycine, leucine and aspartic acid residues respectively, x represents any of the 20 standard amino acids and h denotes a hydrophobic amino acid. [1] This motif was changed to be hhhhDE, where E denotes a glutamate residue. [6] The aspartate and glutamate also form a part of the DEAD/DEAH motifs found in helicases. The aspartate residue co-ordinates magnesium ions, and the glutamate is essential for ATP hydrolysis. [6] There is considerable variability in the sequence of this motif, with the only invariant features being a negatively charged residue following a stretch of bulky, hydrophobic amino acids. [12]

Evolutionary connections

There is a hypothesis that the Walker A phosphate binding motif can be evolutionarily related to Rossman's fold phosphate binding motif because of the shared principles in the location of the binding loop between the first β-strand and α-helix in the αβα sandwich fold and positioning of the functionally important aspartate on the tip of the second β-strand. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Protein kinase</span> Enzyme that adds phosphate groups to other proteins

A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets. Most of the others are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.

<span class="mw-page-title-main">Ras GTPase</span> GTP-binding proteins functioning on cell-cycle regulation

Ras, from "Rat sarcoma virus", is a family of related proteins that are expressed in all animal cell lineages and organs. All Ras protein family members belong to a class of protein called small GTPase, and are involved in transmitting signals within cells. Ras is the prototypical member of the Ras superfamily of proteins, which are all related in three-dimensional structure and regulate diverse cell behaviours.

An NTP binding site is a type of binding site found in nucleoside monophosphate (NMP) kinases, N can be adenosine or guanosine. A P-loop is one of the structural motifs common for nucleoside triphosphate (NTP) binding sites, it interacts with the bound nucleotide's phosphoryl groups. For the binding site to be able to bind a nucleotide, the nucleotide must be complex bound to Mg2+ or Mn2+. Nucleotide binding will cause conformational changes in the protein because the P-loop will bend.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Adenylate kinase</span> Class of enzymes

Adenylate kinase is a phosphotransferase enzyme that catalyzes the interconversion of the various adenosine phosphates. By constantly monitoring phosphate nucleotide levels inside the cell, ADK plays an important role in cellular energy homeostasis.

<span class="mw-page-title-main">ABC transporter</span> Gene family

The ABC transporters, ATP synthase (ATP)-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

<span class="mw-page-title-main">ATP-binding motif</span>

An ATP-binding motif is a 250-residue sequence within an ATP-binding protein’s primary structure. The binding motif is associated with a protein’s structure and/or function. ATP is a molecule of energy, and can be a coenzyme, involved in a number of biological reactions. ATP is proficient at interacting with other molecules through a binding site. The ATP binding site is the environment in which ATP catalytically actives the enzyme and, as a result, is hydrolyzed to ADP. The binding of ATP causes a conformational change to the enzyme it is interacting with.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid biosynthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

Pantothenate kinase (EC 2.7.1.33, PanK; CoaA) is the first enzyme in the Coenzyme A (CoA) biosynthetic pathway. It phosphorylates pantothenate (vitamin B5) to form 4'-phosphopantothenate at the expense of a molecule of adenosine triphosphate (ATP). It is the rate-limiting step in the biosynthesis of CoA.

<span class="mw-page-title-main">BRAF (gene)</span> Protein-coding gene in the species Homo sapiens

BRAF is a human gene that encodes a protein called B-Raf. The gene is also referred to as proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B, while the protein is more formally known as serine/threonine-protein kinase B-Raf.

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">P-type ATPase</span>

The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E1 and E2. P-type ATPases fall under the P-type ATPase (P-ATPase) Superfamily (TC# 3.A.3) which, as of early 2016, includes 20 different protein families.

<span class="mw-page-title-main">Histidine kinase</span> Family of enzymes important in cell signaling

Histidine kinases (HK) are multifunctional, and in non-animal kingdoms, typically transmembrane, proteins of the transferase class of enzymes that play a role in signal transduction across the cellular membrane. The vast majority of HKs are homodimers that exhibit autokinase, phosphotransfer, and phosphatase activity. HKs can act as cellular receptors for signaling molecules in a way analogous to tyrosine kinase receptors (RTK). Multifunctional receptor molecules such as HKs and RTKs typically have portions on the outside of the cell that bind to hormone- or growth factor-like molecules, portions that span the cell membrane, and portions within the cell that contain the enzymatic activity. In addition to kinase activity, the intracellular domains typically have regions that bind to a secondary effector molecule or complex of molecules that further propagate signal transduction within the cell. Distinct from other classes of protein kinases, HKs are usually parts of a two-component signal transduction mechanisms in which HK transfers a phosphate group from ATP to a histidine residue within the kinase, and then to an aspartate residue on the receiver domain of a response regulator protein. More recently, the widespread existence of protein histidine phosphorylation distinct from that of two-component histidine kinases has been recognised in human cells. In marked contrast to Ser, Thr and Tyr phosphorylation, the analysis of phosphorylated Histidine using standard biochemical and mass spectrometric approaches is much more challenging, and special procedures and separation techniques are required for their preservation alongside classical Ser, Thr and Tyr phosphorylation on proteins isolated from human cells.

In enzymology, a nucleoside-phosphate kinase is an enzyme that catalyzes the chemical reaction

Eukaryotic Initiation Factor 2 (eIF2) is an eukaryotic initiation factor. It is required for most forms of eukaryotic translation initiation. eIF2 mediates the binding of tRNAiMet to the ribosome in a GTP-dependent manner. eIF2 is a heterotrimer consisting of an alpha, a beta, and a gamma subunit.

<span class="mw-page-title-main">Pho4</span> Protein-coding gene in the species Saccharomyces cerevisiae S288c

Pho4 is a protein with a basic helix-loop-helix (bHLH) transcription factor. It is found in S. cerevisiae and other yeasts. It functions as a transcription factor to regulate phosphate responsive genes located in yeast cells. The Pho4 protein homodimer is able to do this by binding to DNA sequences containing the bHLH binding site 5'-CACGTG-3'. This sequence is found in the promoters of genes up-regulated in response to phosphate availability such as the PHO5 gene.

<span class="mw-page-title-main">WRKY protein domain</span> Protein domain

The WRKY domain is found in the WRKY transcription factor family, a class of transcription factors. The WRKY domain is found almost exclusively in plants although WRKY genes appear present in some diplomonads, social amoebae and other amoebozoa, and fungi incertae sedis. They appear absent in other non-plant species. WRKY transcription factors have been a significant area of plant research for the past 20 years. The WRKY DNA-binding domain recognizes the W-box (T)TGAC(C/T) cis-regulatory element.

<span class="mw-page-title-main">Niche (protein structural motif)</span>

In the area of protein structural motifs, niches are three or four amino acid residue features in which main-chain CO groups are bridged by positively charged or δ+ groups. The δ+ groups include groups with two hydrogen bond donor atoms such as NH2 groups and water molecules. In typical proteins, 7% of amino acid residues belong to niches bound to a δ+ group, while another 7% have the conformation but no single cationic bridging group is detected.

Eps15 homology domain-containing protein 3, abbreviated as EHD3 and also known as PAST3, is a protein encoded by the EHD3 gene. It has been observed in humans, mice and rats. It belongs to the EHD protein family, a group of four membrane remodeling proteins related to the Dynamin superfamily of large GTPases. Although the four of them are 70-80% amino acid identical, they all have different locations. Its main function is related to endocytic transport.

In molecular biology, an arginine finger is an amino acid residue of some enzymes. Arginine fingers are often found in the protein superfamily of AAA+ ATPases, GTPases, and dUTPases, where they assist in the catalysis of the gamma phosphate or gamma and beta phosphates from ATP or GTP, which creates a release of energy which can be used to perform cellular work. They are also found in GTPase-activating proteins (GAP). Thus, they are essential for many forms of life, and are highly conserved. Arginine fingers function through non-covalent interactions. They may also assist in dimerization, and while they are found in a wide variety of enzymes, they are not ubiquitous.

References

  1. 1 2 Walker JE, Saraste M, Runswick MJ, Gay NJ (1982). "Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold". The EMBO Journal. 1 (8): 945–951. doi:10.1002/j.1460-2075.1982.tb01276.x. PMC   553140 . PMID   6329717.
  2. Leipe DD, Wolf YI, Koonin EV, Aravind L (March 2002). "Classification and evolution of P-loop GTPases and related ATPases". Journal of Molecular Biology. 317 (1): 41–72. doi:10.1006/jmbi.2001.5378. PMID   11916378.
  3. Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry . San Francisco: W.H. Freeman. ISBN   0-7167-4684-0.
  4. Ramakrishnan C, Dani VS, Ramasarma T (October 2002). "A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins". Protein Engineering. 15 (10): 783–798. doi: 10.1093/protein/15.10.783 . PMID   12468712.
  5. Saraste M, Sibbald PR, Wittinghofer A (November 1990). "The P-loop--a common motif in ATP- and GTP-binding proteins". Trends in Biochemical Sciences. 15 (11): 430–434. doi:10.1016/0968-0004(90)90281-f. PMID   2126155.
  6. 1 2 3 Hanson PI, Whiteheart SW (July 2005). "AAA+ proteins: have engine, will work". Nature Reviews. Molecular Cell Biology. 6 (7): 519–529. doi:10.1038/nrm1684. PMID   16072036. S2CID   27830342.
  7. Bugreev DV, Mazin AV (July 2004). "Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity". Proceedings of the National Academy of Sciences of the United States of America. 101 (27): 9988–9993. Bibcode:2004PNAS..101.9988B. doi: 10.1073/pnas.0402105101 . PMC   454202 . PMID   15226506.
  8. Watson JD, Milner-White EJ (January 2002). "A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions". Journal of Molecular Biology. 315 (2): 171–182. doi:10.1006/jmbi.2001.5227. PMID   11779237.
  9. Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White EJ (May 2012). "A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate". Proteins. 80 (5): 1418–1424. doi:10.1002/prot.24038. PMID   22275093. S2CID   5401588.
  10. Zhang M, Stauffacher CV, Lin D, Van Etten RL (August 1998). "Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity". The Journal of Biological Chemistry. 273 (34): 21714–21720. doi: 10.1074/jbc.273.34.21714 . PMID   9705307.
  11. Ambudkar SV, Kim IW, Xia D, Sauna ZE (February 2006). "The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding". FEBS Letters. 580 (4): 1049–1055. doi: 10.1016/j.febslet.2005.12.051 . PMID   16412422.
  12. Koonin EV (June 1993). "A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication". Nucleic Acids Research. 21 (11): 2541–2547. doi:10.1093/nar/21.11.2541. PMC   309579 . PMID   8332451.
  13. Longo LM, Jabłońska J, Vyas P, Kanade M, Kolodny R, Ben-Tal N, Tawfik DS (December 2020). Deane CM, Boudker O (eds.). "On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment". eLife. 9: e64415. doi: 10.7554/eLife.64415 . PMC   7758060 . PMID   33295875.