Water content

Last updated
Soil composition by Volume and Mass, by phase: air, water, void (pores filled with water or air), soil, and total. Soil-phase-diagram.svg
Soil composition by Volume and Mass, by phase: air, water, void (pores filled with water or air), soil, and total.

Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture ), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' porosity at saturation. It can be given on a volumetric or mass (gravimetric) basis.

Contents

Definitions

Volumetric water content, θ, is defined mathematically as:

where is the volume of water and is equal to the total volume of the wet material, i.e. of the sum of the volume of solid host material (e.g., soil particles, vegetation tissue) , of water , and of air .

Gravimetric water content [1] is expressed by mass (weight) as follows:

where is the mass of water and is the mass of the solids.

For materials that change in volume with water content, such as coal, the gravimetric water content, u, is expressed in terms of the mass of water per unit mass of the moist specimen (before drying):

However, woodworking, geotechnics and soil science require the gravimetric moisture content to be expressed with respect to the sample's dry weight:

And in food science, both and are used and called respectively moisture content wet basis (MCwb) and moisture content dry basis (MCdb). [2]

Values are often expressed as a percentage, i.e. u×100%.

To convert gravimetric water content to volumetric water content, multiply the gravimetric water content by the bulk specific gravity of the material:

.

Derived quantities

In soil mechanics and petroleum engineering the water saturation or degree of saturation, , is defined as

where is the porosity, in terms of the volume of void or pore space and the total volume of the substance .[ clarification needed ] Values of Sw can range from 0 (dry) to 1 (saturated). In reality, Sw never reaches 0 or 1 - these are idealizations for engineering use.

The normalized water content, , (also called effective saturation or ) is a dimensionless value defined by van Genuchten [3] as:

where is the volumetric water content; is the residual water content, defined as the water content for which the gradient becomes zero; and, is the saturated water content, which is equivalent to porosity, .

Measurement

Direct methods

Water content can be directly measured using a drying oven.

Gravimetric water content, u, is calculated [4] via the mass of water :

where and are the masses of the sample before and after drying in the oven. This gives the numerator of u; the denominator is either or (resulting in u' or u", respectively), depending on the discipline.

On the other hand, volumetric water content, θ, is calculated [5] via the volume of water :

where is the density of water. This gives the numerator of θ; the denominator, , is the total volume of the wet material, which is fixed by simply filling up a container of known volume (e.g., a tin can) when taking a sample.

For wood, the convention is to report moisture content on oven-dry basis (i.e. generally drying sample in an oven set at 105 deg Celsius for 24 hours or until it stops losing weight). In wood drying, this is an important concept.

Laboratory methods

Other methods that determine water content of a sample include chemical titrations (for example the Karl Fischer titration), determining mass loss on heating (perhaps in the presence of an inert gas), or after freeze drying. In the food industry the Dean-Stark method is also commonly used.

From the Annual Book of ASTM (American Society for Testing and Materials) Standards, the total evaporable moisture content in Aggregate (C 566) can be calculated with the formula:

where is the fraction of total evaporable moisture content of sample, is the mass of the original sample, and is mass of dried sample.

Soil moisture measurement

In addition to the direct and laboratory methods above, the following options are available.

Geophysical methods

There are several geophysical methods available that can approximate in situ soil water content. These methods include: time-domain reflectometry (TDR), neutron probe, frequency domain sensor, capacitance probe, amplitude domain reflectometry, electrical resistivity tomography, ground penetrating radar (GPR), and others that are sensitive to the physical properties of water . [6] Geophysical sensors are often used to monitor soil moisture continuously in agricultural and scientific applications.

Satellite remote sensing method

Satellite microwave remote sensing is used to estimate soil moisture based on the large contrast between the dielectric properties of wet and dry soil. The microwave radiation is not sensitive to atmospheric variables, and can penetrate through clouds. Also, microwave signal can penetrate, to a certain extent, the vegetation canopy and retrieve information from ground surface. [7] The data from microwave remote sensing satellites such as WindSat, AMSR-E, RADARSAT, ERS-1-2, Metop/ASCAT, and SMAP are used to estimate surface soil moisture. [8]

Wood moisture measurement

Two primary methods exist to measure the moisture content of wood: oven-dry testing and use of an electronic moisture meter.

Oven-dry method

The oven-dry method requires drying a wood sample in a special oven or kiln and checking the sample weight at regular time intervals. When the drying process is complete, the sample’s weight is compared to its weight before drying, and the difference is used to calculate the wood’s original moisture content.

Moisture meter method

Pin and pinless meters are the two main types of moisture meters.

Pin meters require driving two pins into the surface of the wood while making sure that the pins are aligned with the grain and not perpendicular to it. Pin meters provide moisture content readings by measuring the resistance in the electrical current between the two pins. The drier the wood, the more resistance to the electrical current, when measuring below the fiber saturation point of wood. Pin meters are generally preferred when there is no flat surface of the wood available to measure

Pinless meters emit an electromagnetic signal into the wood to provide readings of the wood’s moisture content and are generally preferred when damage to the wood's surface is unacceptable or when a high volume of readings or greater ease of use is required.

Classification and uses

Moisture may be present as adsorbed moisture at internal surfaces and as capillary condensed water in small pores. At low relative humidities, moisture consists mainly of adsorbed water. At higher relative humidities, liquid water becomes more and more important, depending or not depending on the pore size can also be an influence of volume. In wood-based materials, however, almost all water is adsorbed at humidities below 98% RH.

In biological applications there can also be a distinction between physisorbed water and "free" water — the physisorbed water being that closely associated with and relatively difficult to remove from a biological material. The method used to determine water content may affect whether water present in this form is accounted for. For a better indication of "free" and "bound" water, the water activity of a material should be considered.

Water molecules may also be present in materials closely associated with individual molecules, as "water of crystallization", or as water molecules which are static components of protein structure.

Earth and agricultural sciences

In soil science, hydrology and agricultural sciences, water content has an important role for groundwater recharge, agriculture, and soil chemistry. Many recent scientific research efforts have aimed toward a predictive-understanding of water content over space and time. Observations have revealed generally that spatial variance in water content tends to increase as overall wetness increases in semiarid regions, to decrease as overall wetness increases in humid regions, and to peak under intermediate wetness conditions in temperate regions . [9]

There are four standard water contents that are routinely measured and used, which are described in the following table:

NameNotationSuction pressure
(J/kg or kPa)
Typical water content
(vol/vol)
Conditions
Saturated water contentθs00.2–0.5Fully saturated soil, equivalent to effective porosity
Field capacity θfc−330.1–0.35Soil moisture 2–3 days after a rain or irrigation
Permanent wilting point θpwp or θwp−15000.01–0.25Minimum soil moisture at which a plant wilts
Residual water contentθr−∞0.001–0.1Remaining water at high tension

And lastly the available water content, θa, which is equivalent to:

θa ≡ θfc − θpwp

which can range between 0.1 in gravel and 0.3 in peat.

Agriculture

When a soil becomes too dry, plant transpiration drops because the water is increasingly bound to the soil particles by suction. Below the wilting point plants are no longer able to extract water. At this point they wilt and cease transpiring altogether. Conditions where soil is too dry to maintain reliable plant growth is referred to as agricultural drought, and is a particular focus of irrigation management. Such conditions are common in arid and semi-arid environments.

Some agriculture professionals are beginning to use environmental measurements such as soil moisture to schedule irrigation. This method is referred to as smart irrigation or soil cultivation. [10]

Groundwater

In saturated groundwater aquifers, all available pore spaces are filled with water (volumetric water content = porosity). Above a capillary fringe, pore spaces have air in them too.

Most soils have a water content less than porosity, which is the definition of unsaturated conditions, and they make up the subject of vadose zone hydrogeology. The capillary fringe of the water table is the dividing line between saturated and unsaturated conditions. Water content in the capillary fringe decreases with increasing distance above the phreatic surface. The flow of water through and unsaturated zone in soils often involves a process of fingering, resulting from Saffman–Taylor instability. This results mostly through drainage processes and produces and unstable interface between saturated and unsaturated regions.

One of the main complications which arises in studying the vadose zone, is the fact that the unsaturated hydraulic conductivity is a function of the water content of the material. As a material dries out, the connected wet pathways through the media become smaller, the hydraulic conductivity decreasing with lower water content in a very non-linear fashion.

A water retention curve is the relationship between volumetric water content and the water potential of the porous medium. It is characteristic for different types of porous medium. Due to hysteresis, different wetting and drying curves may be distinguished.

In aggregates

Generally, an aggregate has four different moisture conditions. They are Oven-dry (OD), Air-dry (AD), Saturated surface dry (SSD) and damp (or wet). [11] Oven-dry and Saturated surface dry can be achieved by experiments in laboratories, while Air-dry and damp (or wet) are aggregates' common conditions in nature.

Four Conditions

The water adsorption by mass (Am) is defined in terms of the mass of saturated-surface-dry (Mssd) sample and the mass of oven dried test sample (Mdry) by the formula:

Application

Among these four moisture condition of aggregates, saturated surface dry is the condition that has the most applications in laboratory experiments, researches and studies, especially these related to water absorption, composition ratio or shrinkage test in materials like concrete. For many related experiments, a saturated surface dry condition is a premise that must be realize before the experiment. In saturated surface dry condition, the aggregate's water content is in a relatively stable and static situation where it would not be affected by its environment. Therefore, in experiments and tests where aggregates are in saturated surface dry condition, there would be fewer disrupting factors than in other three conditions. [14] [15]

See also

Related Research Articles

Equivalent potential temperature, commonly referred to as theta-e, is a quantity that is conserved during changes to an air parcel's pressure, even if water vapor condenses during that pressure change. It is therefore more conserved than the ordinary potential temperature, which remains constant only for unsaturated vertical motions.

<span class="mw-page-title-main">Psychrometrics</span> Study of gas-vapor mixtures

Psychrometrics is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures.

The specific weight, also known as the unit weight, is the weight per unit volume of a material.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m−1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.

<span class="mw-page-title-main">Contact angle</span> The angle between a liquid–vapor interface and a solid surface

The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liquid, and vapor at a given temperature and pressure has a unique equilibrium contact angle. However, in practice a dynamic phenomenon of contact angle hysteresis is often observed, ranging from the advancing (maximal) contact angle to the receding (minimal) contact angle. The equilibrium contact is within those values, and can be calculated from them. The equilibrium contact angle reflects the relative strength of the liquid, solid, and vapour molecular interaction.

In materials science, bulk density, also called apparent density or volumetric density, is a property of powders, granules, and other "divided" solids, especially used in reference to mineral components, chemical substances, (pharmaceutical) ingredients, foodstuff, or any other masses of corpuscular or particulate matter (particles).

<span class="mw-page-title-main">Infiltration (hydrology)</span> Process by which water on the ground surface enters the soil

Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.

<span class="mw-page-title-main">Water retention curve</span>

Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. This curve is characteristic for different types of soil, and is also called the soil moisture characteristic.

In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube, resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and industrial purposes. It is also observed in natural phenomena.

<span class="mw-page-title-main">Wood drying</span> Also known as seasoning, which is the reduction of the moisture content of wood prior to its use

Wood drying reduces the moisture content of wood before its use. When the drying is done in a kiln, the product is known as kiln-dried timber or lumber, whereas air drying is the more traditional method.

The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. Proof of the existence and uniqueness of solution was given only in 1983 by Alt and Luckhaus. The equation is based on Darcy-Buckingham law representing flow in porous media under variably saturated conditions, which is stated as

The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds.

<span class="mw-page-title-main">HydroGeoSphere</span>

HydroGeoSphere (HGS) is a 3D control-volume finite element groundwater model, and is based on a rigorous conceptualization of the hydrologic system consisting of surface and subsurface flow regimes. The model is designed to take into account all key components of the hydrologic cycle. For each time step, the model solves surface and subsurface flow, solute and energy transport equations simultaneously, and provides a complete water and solute balance.

Saturated surface dry (SSD) is defined as the condition of an aggregate in which the surfaces of the particles are "dry", but the inter-particle voids are saturated with water. In this condition aggregates will not affect the free water content of a composite material.

Porosity or void fraction is a measure of the void spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface.

<span class="mw-page-title-main">Finite water-content vadose zone flow method</span>

The finite water-content vadose zone flux method represents a one-dimensional alternative to the numerical solution of Richards' equation for simulating the movement of water in unsaturated soils. The finite water-content method solves the advection-like term of the Soil Moisture Velocity Equation, which is an ordinary differential equation alternative to the Richards partial differential equation. The Richards equation is difficult to approximate in general because it does not have a closed-form analytical solution except in a few cases. The finite water-content method, is perhaps the first generic replacement for the numerical solution of the Richards' equation. The finite water-content solution has several advantages over the Richards equation solution. First, as an ordinary differential equation it is explicit, guaranteed to converge and computationally inexpensive to solve. Second, using a finite volume solution methodology it is guaranteed to conserve mass. The finite water content method readily simulates sharp wetting fronts, something that the Richards solution struggles with. The main limiting assumption required to use the finite water-content method is that the soil be homogeneous in layers.

A density meter, also known as a densimeter, is a device which measures the density of an object or material. Density is usually abbreviated as either or . Typically, density either has the units of or . The most basic principle of how density is calculated is by the formula:

The rise in core (RIC) method is an alternate reservoir wettability characterization method described by S. Ghedan and C. H. Canbaz in 2014. The method enables estimation of all wetting regions such as strongly water wet, intermediate water, oil wet and strongly oil wet regions in relatively quick and accurate measurements in terms of Contact angle rather than wettability index.

The soil moisture velocity equation describes the speed that water moves vertically through unsaturated soil under the combined actions of gravity and capillarity, a process known as infiltration. The equation is alternative form of the Richardson/Richards' equation. The key difference being that the dependent variable is the position of the wetting front , which is a function of time, the water content and media properties. The soil moisture velocity equation consists of two terms. The first "advection-like" term was developed to simulate surface infiltration and was extended to the water table, which was verified using data collected in a column experimental that was patterned after the famous experiment by Childs & Poulovassilis (1962) and against exact solutions.

References

  1. T. William Lambe & Robert V. Whitman (1969). "Chapter 3: Description of an Assemblage of Particles" . Soil Mechanics (First ed.). John Wiley & Sons, Inc. p.  553. ISBN   978-0-471-51192-2.
  2. R. Paul Singh; Dennis R. Heldman (2014). "Chapter 1: Introduction". Introduction to Food Engineering (Fifth ed.). Elsevier. doi:10.1016/c2011-0-06101-x. ISBN   978-0-12-398530-9.
  3. van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892–898. Bibcode:1980SSASJ..44..892V. doi:10.2136/sssaj1980.03615995004400050002x. hdl: 10338.dmlcz/141699 .
  4. "Gravimetric & Volumetric Soil Water Content | Edaphic Scientific". 9 May 2016.
  5. Dingman, S.L. (2002). "Chapter 6, Water in soils: infiltration and redistribution". Physical Hydrology (Second ed.). Upper Saddle River, New Jersey: Prentice-Hall, Inc. p. 646. ISBN   978-0-13-099695-4.
  6. F. Ozcep; M. Asci; O. Tezel; T. Yas; N. Alpaslan; D. Gundogdu (2005). "Relationships Between Electrical Properties (in Situ) and Water Content (in the Laboratory) of Some Soils in Turkey" (PDF). Geophysical Research Abstracts. 7.
  7. Lakhankar, Tarendra; Ghedira, Hosni; Temimi, Marouane; Sengupta, Manajit; Khanbilvardi, Reza; Blake, Reginald (2009). "Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data". Remote Sensing. 1 (1): 3–21. Bibcode:2009RemS....1....3L. doi: 10.3390/rs1010003 .
  8. "Remote Sensing of Soil Moisture". Archived from the original on 2007-09-29. Retrieved 2007-08-22.
  9. Lawrence, J. E. & G. M. Hornberger (2007). "Soil moisture variability across climate zones". Geophys. Res. Lett. 34 (L20402): L20402. Bibcode:2007GeoRL..3420402L. doi: 10.1029/2007GL031382 .
  10. Jesi, V. Elizabeth; Kumar, Anil; Hosen, Bappa; D, Stalin David (2022-04-24). "IoT Enabled Smart Irrigation and Cultivation Recommendation System for Precision Agriculture". ECS Transactions. 107 (1): 5953–5967. Bibcode:2022ECSTr.107.5953J. doi:10.1149/10701.5953ecst. ISSN   1938-5862. S2CID   248458443.
  11. 1 2 3 4 5 "Water-to-Cement Ratio and Aggregate Moisture Corrections". precast.org. Retrieved 2018-11-18.
  12. "Aggregate Moisture in Concrete". Concrete Construction. Retrieved 2018-11-08.
  13. ftp://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/400-A_series/pdfs/cnn403.pdf
  14. Zaccardi, Y. A. Villagrán; Zega, C. J.; Carrizo, L. E.; Sosa, M. E. (2018-10-01). "Water absorption of fine recycled aggregates: effective determination by a method based on electrical conductivity". Materials and Structures. 51 (5): 127. doi:10.1617/s11527-018-1248-2. ISSN   1871-6873. S2CID   139201161.
  15. Kawamura, Masashi; Kasai, Yoshio (2009-05-29). "Determination of saturated surface-dry condition of clay–sand mixed soils for soil–cement concrete construction". Materials and Structures. 43 (4): 571–582. doi:10.1617/s11527-009-9512-0. ISSN   1359-5997. S2CID   137282443.

Further reading