Watermelon snow

Last updated
Watermelon snow on Mount Ritter in California 170828-FS-Inyo-PRW-001-MountRitter (36217539154).jpg
Watermelon snow on Mount Ritter in California

Watermelon snow, also called snow algae, pink snow, red snow, or blood snow, is a phenomenon caused by Chlamydomonas nivalis , a species of green algae containing a secondary red carotenoid pigment (astaxanthin) in addition to chlorophyll. Unlike most species of fresh-water algae, this species appears to be cryophilic (cold-loving) and thrives in freezing water. [1]

Contents

This type of snow is common during the summer in alpine and coastal polar regions worldwide, such as the Sierra Nevada of California. Here, at altitudes of 10,000 to 12,000 feet (3,000–3,600 m), the temperature is cold throughout the year, and so the snow has lingered from winter storms. Compressing the snow by stepping on it or making snowballs leaves it looking red. Walking on watermelon snow often results in getting bright red soles and pink trouser cuffs.

Snow algae dominates glacial biomass immediately after the onset of melting, and its pigmentation can significantly darken the surface of a glacier. This plays a substantial role in glacial melt. [2]

History

The earliest accounts of watermelon snow are in the writings of Aristotle. [3] [4] Watermelon snow has puzzled mountain climbers, explorers, and naturalists for thousands of years, some speculating that it was caused by mineral deposits or oxidation products that were leached from rocks.

In May 1818, four ships sailed from England to search for the Northwest Passage and chart the Arctic coastline of North America. Severe weather made them finally turn the ships back, but the expedition made valuable contributions to science. Captain John Ross noticed crimson snow that streaked the white cliffs like streams of blood as they were rounding Cape York on the northwest coast of Greenland. A landing party stopped and brought back samples to England. The Times wrote about this discovery on December 4, 1818: [5]

Captain Sir John Ross has brought from Baffin's Bay a quantity of red snow, or rather snow-water, which has been submitted to chymical analysis in this country, in order to the discovery of the nature of its colouring matter. Our credulity is put to an extreme test upon this occasion, but we cannot learn that there is any reason to doubt the fact as stated. Sir John Ross did not see any red snow fall; but he saw large tracts overspread with it. The colour of the fields of snow was not uniform; but, on the contrary, there were patches or streaks more or less red, and of various depths of tint. The liquor, or dissolved snow, is of so dark a red as to resemble red port wine. It is stated, that the liquor deposits a sediment; and that the question is not answered, whether that sediment is of an animal or vegetable nature. It is suggested that the colour is derived from the soil on which the snow falls: in this case, no red snow can have been seen on the ice.

A follow-up article three days later erroneously concluded that the coloration was caused by meteoric iron deposits: [6]

Some doubt has been expressed as to the red snow observed by Sir John Ross and his associates in the newly discovered arctic region; but when it is known that the iron which was also found there, lying on the surface, in heaps, and in considerable quantities, was all meteoric, the doubt will cease, and the fact will admit of an easy solution. Sir John Ross brought home small specimens of this iron, which has been subjected by Mr. Professor Brande to the usual tests, and it is found to be precisely of the kind of the meteoric stones that occasionally fall in more southern latitudes. It is impregnated with nickel, which is never found in earth iron. That, therefore, which loads the atmosphere with the fluid which composes this meteoric iron, serves to colour the snow; iron being found to be the colourist of all metallic as well as vegetable matter.

Unusual watermelon snow pits, superimposed with an orange-ish bootprint Watermelon snow pits.jpg
Unusual watermelon snow pits, superimposed with an orange-ish bootprint
Tracks made by sliding on watermelon snow in Utah's Uinta Mountains Watermelon snow - Uinta Mountains.jpg
Tracks made by sliding on watermelon snow in Utah's Uinta Mountains

When Ross published his account of the voyage in 1818, it contained a botanical appendix by Robert Brown. In it, Brown tentatively attributed the red snow to an alga. [7]

The phenomenon was also reported from the Scottish Highlands in the nineteenth century and subsequently recorded scientifically from a snowpatch in the Cairngorm Mountains in 1967. [8]

Chlamydomonas nivalis and its new genus Sanguina

The name Chlamydomonas nivalis has been associated with the phenomenon of red snow for the last 200 years, yet, a latest study shows that the alga responsible for most of the red snow fields on our earth does not belong to the genus Chlamydomonas , but had to be placed in a separate, new genus, Sanguina. This genus contains two species, S. nivaloides producing red snow, and S. aurantia causing orange snow. [9] All snow algae producing red or orange snow are actually green alga that owe their red color to a bright red carotenoid pigment, which protects the chloroplast from intense visible and also ultraviolet radiation, as well as absorbing heat, which provides the alga with liquid water as the snow melts around it. Algal blooms may extend to a depth of 25 cm (10 inches), with each cell measuring about 20 to 30 micrometers in diameter, about four times the diameter of a human red blood cell. It has been calculated that a teaspoon of melted snow contains a million or more cells. The algae sometimes accumulate in "sun cups", which are shallow depressions in the snow. The carotenoid pigment absorbs heat and as a result it deepens the sun cups, and accelerates the melting rate of glaciers and snowbanks.

During the winter months, when snow covers them, the algae become dormant. In spring, nutrients, increased levels of light and meltwater, stimulate germination. Once they germinate, the resting cells release smaller green flagellate cells which travel towards the surface of the snow. Once the flagellated cells reach the surface, they may lose their flagellae and form aplanospores, or thick-walled resting cells, or they may function as gametes, fusing in pairs to form zygotes.

Many species feed on C. nivalis/Sanguina spp., including protozoans such as ciliates, rotifers, nematodes, ice worms and springtails.

See also

Notes

  1. William E. Williams; Holly L. Gorton & Thomas C. Vogelmann (January 21, 2003). "Surface gas-exchange processes of snow algae". Proceedings of the National Academy of Sciences of the United States of America . 100 (2): 562–566. Bibcode:2003PNAS..100..562W. doi: 10.1073/pnas.0235560100 . PMC   141035 . PMID   12518048.
  2. Lutz S, Anesio AM, Raiswell R, et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nature Communications. 2016 Jun;7:11968. DOI: 10.1038/ncomms11968.
  3. Aristotle. "History of Animals V". University of Chicago. p. 19. Retrieved 13 August 2018.
  4. Werner, Petra (2007). Roter Schnee oder die Suche nach dem f{\"a}rbenden Prinzip (PDF). Akademie Verlag Berlin. Archived (PDF) from the original on 2016-08-09.
  5. "Red snow from the Arctic regions". The Times . December 4, 1818. p. 2.
  6. "The King's health". The Times . December 7, 1818. p. 2.
  7. Brown, Robert (1818). "List of Plants collected by the Officers, &c., in Captain Ross's voyage, on the coasts of Baffin's Bay"  .{{cite journal}}: Cite journal requires |journal= (help)
  8. A snow microflora in the Cairngorm Mountains, Scotland http://pdfserve.informaworld.com/370009__780343798.pdf
  9. Procházková, Lenka; Leya, Thomas; Křížková, Heda; Nedbalová, Linda (2019). "Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow". FEMS Microbiology Ecology. 95 (6): fiz064. doi: 10.1093/femsec/fiz064 . PMC   6545352 . PMID   31074825.

Related Research Articles

<span class="mw-page-title-main">Algae</span> Diverse group of photosynthetic eukaryotic organisms

Algae are any of a large and diverse group of photosynthetic, eukaryotic organisms. The name is an informal term for a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 metres (160 ft) in length. Most are aquatic and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried by water are plankton, specifically phytoplankton.

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in the cells. The ATP and NADPH is then used to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<i>Chlamydomonas</i> Genus of algae

Chlamydomonas is a genus of green algae consisting of about 150 species of unicellular flagellates, found in stagnant water and on damp soil, in freshwater, seawater, and even in snow as "snow algae". Chlamydomonas is used as a model organism for molecular biology, especially studies of flagellar motility and chloroplast dynamics, biogenesis, and genetics. One of the many striking features of Chlamydomonas is that it contains ion channels (channelrhodopsins) that are directly activated by light. Some regulatory systems of Chlamydomonas are more complex than their homologs in Gymnosperms, with evolutionarily related regulatory proteins being larger and containing additional domains.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid (spherical), and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Pyrenoid</span> Organelle found within the chloroplasts of algae and hornworts

Pyrenoids are sub-cellular micro-compartments found in chloroplasts of many algae, and in a single group of land plants, the hornworts. Pyrenoids are associated with the operation of a carbon-concentrating mechanism (CCM). Their main function is to act as centres of carbon dioxide (CO2) fixation, by generating and maintaining a CO2 rich environment around the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Pyrenoids therefore seem to have a role analogous to that of carboxysomes in cyanobacteria.

<i>Chlamydomonas reinhardtii</i> Species of alga

Chlamydomonas reinhardtii is a single-cell green alga about 10 micrometres in diameter that swims with two flagella. It has a cell wall made of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an eyespot that senses light.

Ice algae are any of the various types of algal communities found in annual and multi-year sea, and terrestrial lake ice or glacier ice.

<span class="mw-page-title-main">Snow algae</span> Group of alpine and polar freshwater algae

Snow algae are a group of freshwater micro-algae that grow in the alpine and polar regions of the Earth. Snow algae have been found on every continent but are restricted to areas with temperatures between 0°C-10°C. Snow algae are pigmented by chlorophyll and carotenoids and can be a variety of colors depending on the individual species, life stage, and topography/geography. The pigmentation of snow algae reduces snow and ice albedo, which can stimulate the melting of perennial snow and ice and exacerbate the effects of climate change. Snow algae are primary producers that form the basis of communities on snow or ice sheets that include microbes, tardigrades, and rotifers. Snow algae have also been carried great distances by winds.

<i>Dunaliella salina</i> Species of alga

Dunaliella salina is a type of halophile unicellular green algae especially found in hypersaline environments, such as salt lakes and salt evaporation ponds. Known for its antioxidant activity because of its ability to create a large amount of carotenoids, it is responsible for most of the primary production in hypersaline environments worldwide, and is also used in cosmetics and dietary supplements.

<i>Chlamydomonas nivalis</i> Species of alga

Chlamydomonas nivalis, also referred to as Chloromonas typhlos, is a unicellular red-coloured photosynthetic green alga that is found in the snowfields of the alps and polar regions all over the world. They are one of the main algae responsible for causing the phenomenon of watermelon snow, where patches of snow appear red or pink. The first account of microbial communities that form red snow was made by Aristotle. Researchers have been active in studying this organism for over 100 years.

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

<span class="mw-page-title-main">Eyespot apparatus</span> Photoreceptive organelle

The eyespot apparatus is a photoreceptive organelle found in the flagellate or (motile) cells of green algae and other unicellular photosynthetic organisms such as euglenids. It allows the cells to sense light direction and intensity and respond to it, prompting the organism to either swim towards the light, or away from it. A related response occurs when cells are briefly exposed to high light intensity, causing the cell to stop, briefly swim backwards, then change swimming direction. Eyespot-mediated light perception helps the cells in finding an environment with optimal light conditions for photosynthesis. Eyespots are the simplest and most common "eyes" found in nature, composed of photoreceptors and areas of bright orange-red red pigment granules. Signals relayed from the eyespot photoreceptors result in alteration of the beating pattern of the flagella, generating a phototactic response.

<i>Dunaliella</i> Genus of algae

Dunaliella is a single-celled, photosynthetic green alga, that is characteristic for its ability to outcompete other organisms and thrive in hypersaline environments. It is mostly a marine organism, though there are a few freshwater species that tend to be more rare. It is a genus in which certain species can accumulate relatively large amounts of β-carotenoids and glycerol in very harsh growth conditions consisting of high light intensities, high salt concentrations, and limited oxygen and nitrogen levels, yet is still very abundant in lakes and lagoons all around the world.

<i>Chlainomonas</i> Genus of algae

Chlainomonas is a genus of algae in the family Chlamydomonadaceae. They are found in freshwater habitats or on snow, where they are one of the main algae responsible for causing watermelon snow.

<i>Chloromonas</i> Genus of algae

Chloromonas is a genus of green algae in the family Chlamydomonadaceae. It is closely related to the model green algae, Chlamydomonas, and traditionally has been distinguished mainly through the absence of a pyrenoid.

<i>Tetraspora</i> Genus of algae

Tetraspora is a genus of green algae in the family Tetrasporaceae of the order Chlamydomonadales, division Chlorophyta. Species of Tetraspora are unicellular green algae that exist in arrangements of four and consist of cells being packaged together in a gelatinous envelope that creates macroscopic colonies. These are primarily freshwater organisms, although there have been few cases where they have been found inhabiting marine environments and even contaminated water bodies. Tetraspora species can be found all around the globe, except in Antarctica. Despite the ubiquitous presence, the greatest growth of the genera's species is seen in the polar climatic zones.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<span class="mw-page-title-main">Rotten ice</span> Melting or otherwise disintegrating ice on open water

Rotten ice is a loose term for ice that is melting or structurally disintegrating due to being honeycombed by liquid water, air, or contaminants trapped between the initial growth of ice crystals. It may appear transparent or splotchy grey, and it is generally found after spring or summer thaws, presenting a danger to those traveling or spending time in outdoor recreation. The increase of rotten ice vs. solid ice in the Arctic affects ocean-atmosphere heat transfer and year-to-year ice formation, as well as the lives of the Inuit, sea mammals such as walrus and polar bear, and the microorganisms that live inside the ice.

The Gilbert Morgan Smith Medal is awarded by the U.S. National Academy of Sciences "in recognition of excellence in published research on marine or freshwater algae." It has been awarded every three years since 1979.

References