Algal bloom

Last updated

A very large algae bloom in Lake Erie, North America, which can be seen from space. Toxic Algae Bloom in Lake Erie.jpg
A very large algae bloom in Lake Erie, North America, which can be seen from space.

An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. [1] The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. [2]   Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. [3] An example of a macroscopic algal bloom is a kelp forest. [2]

Contents

Algal blooms are the result of a nutrient, like nitrogen or phosphorus from various sources (for example fertilizer runoff or other forms of nutrient pollution), entering the aquatic system and causing excessive growth of algae. An algal bloom affects the whole ecosystem.

Consequences range from the benign feeding of higher trophic levels to more harmful effects like blocking sunlight from reaching other organisms, causing a depletion of oxygen levels in the water, and, depending on the organism, secreting toxins into the water. Blooms that can injure animals or the ecology, especially those blooms where toxins are secreted by the algae, are usually called "harmful algal blooms" (HAB), and can lead to fish die-offs, cities cutting off water to residents, or states having to close fisheries. The process of the oversupply of nutrients leading to algae growth and oxygen depletion is called eutrophication.

Algal and bacterial blooms have persistently contributed to mass extinctions driven by global warming in the geologic past, such as during the end-Permian extinction driven by Siberian Traps volcanism and the biotic recovery following the mass extinction. [4]

Characterization

The term algal bloom is defined inconsistently depending on the scientific field and can range from a "minibloom"[ when defined as? ] of harmless algae to a large, harmful bloom event. [5] Since algae is a broad term including organisms of widely varying sizes, growth rates, and nutrient requirements, there is no officially recognized threshold level as to what is defined as a bloom. Because there is no scientific consensus, blooms can be characterized and quantified in several ways: measurements of new algal biomass, the concentration of photosynthetic pigment, quantification of the bloom's negative effect, or relative concentration of the algae compared to the rest of the microbial community. [5] For example, definitions of blooms have included when the concentration of chlorophyll exceeds 100 ug/L, [6] when the concentration of chlorophyll exceeds 5 ug/L, [7] when the species considered to be blooming exceeds concentrations of 1000 cells/mL, [8] and when the algae species concentration simply deviates from its normal growth. [9] [10]

Blooms are the result of a nutrient needed by the particular algae being introduced to the local aquatic system. This growth-limiting nutrient is typically nitrogen or phosphorus, but can also be iron, vitamins, or amino acids. [2] There are several mechanisms for the addition of these nutrients in water. In the open ocean and along coastlines, upwelling from both winds and topographical ocean floor features can draw nutrients to the photic, or sunlit zone of the ocean. [11] Along coastal regions and in freshwater systems, agricultural, city, and sewage runoff can cause algal blooms. [12]

Algal blooms, especially large algal bloom events, can reduce the transparency of the water and can discolor the water. [2] The photosynthetic pigments in the algal cells, like chlorophyll and photoprotective pigments, determine the color of the algal bloom. Depending on the organism, its pigments, and the depth in the water column, algal blooms can be green, red, brown, golden, and purple. [2] Bright green blooms in freshwater systems are frequently a result of cyanobacteria (colloquially known as "blue-green algae") such as Microcystis . [2] [13] Blooms may also consist of macroalgal (non-phytoplanktonic) species. These blooms are recognizable by large blades of algae that may wash up onto the shoreline. [14]

Once the nutrient is present in the water, the algae begin to grow at a much faster rate than usual. In a mini bloom, this fast growth benefits the whole ecosystem by providing food and nutrients for other organisms. [10]

Of particular note are the harmful algal blooms (HABs), which are algal bloom events involving toxic or otherwise harmful phytoplankton. Many species can cause harmful algal blooms. For example, Gymnodinium nagasakiense can cause harmful red tides, dinoflagellates Gonyaulax polygramma can cause oxygen depletion and result in large fish kills, cyanobacteria Microcystis aeruginosa can make poisonous toxins, and diatom Chaetoceros convolutus can damage fish gills. [15]

Freshwater algal blooms

Cyanobacteria activity turns Coatepeque Caldera lake into a turquoise color. Lago de coatepeque de color.jpg
Cyanobacteria activity turns Coatepeque Caldera lake into a turquoise color.

Freshwater algal blooms are the result of an excess of nutrients, particularly some phosphates. [19] [20] Excess nutrients may originate from fertilizers that are applied to land for agricultural or recreational purposes and may also originate from household cleaning products containing phosphorus. [21]

The reduction of phosphorus inputs is required to mitigate blooms that contain cyanobacteria. [22] In lakes that are stratified in the summer, autumn turnover can release substantial quantities of bio-available phosphorus potentially triggering algal blooms as soon as sufficient photosynthetic light is available. [23] Excess nutrients can enter watersheds through water runoff. [24] Excess carbon and nitrogen have also been suspected as causes. Presence of residual sodium carbonate acts as catalyst for the algae to bloom by providing dissolved carbon dioxide for enhanced photosynthesis in the presence of nutrients.[ citation needed ]

When phosphates are introduced into water systems, higher concentrations cause increased growth of algae and plants. Algae tend to grow very quickly under high nutrient availability, but each alga is short-lived, and the result is a high concentration of dead organic matter which starts to decompose. Natural decomposers present in the water begin decomposing the dead algae, consuming dissolved oxygen present in the water during the process. This can result in a sharp decrease in available dissolved oxygen for other aquatic life. Without sufficient dissolved oxygen in the water, animals and plants may die off in large numbers. This may also be known as a dead zone.[ citation needed ]

Blooms may be observed in freshwater aquariums when fish are overfed and excess nutrients are not absorbed by plants. These are generally harmful for fish, and the situation can be corrected by changing the water in the tank and then reducing the amount of food given.[ citation needed ]

Marine algal blooms

Competing hypothesis of plankton variability Competing scientific hypothesis of plankton variability.png
Competing hypothesis of plankton variability

Turbulent storms churn the ocean in summer, adding nutrients to sunlit waters near the surface. This sparks a feeding frenzy each spring that gives rise to massive blooms of phytoplankton. Tiny molecules found inside these microscopic plants harvest vital energy from sunlight through photosynthesis. The natural pigments, called chlorophyll, allow phytoplankton to thrive in Earth's oceans and enable scientists to monitor blooms from space. Satellites reveal the location and abundance of phytoplankton by detecting the amount of chlorophyll present in coastal and open waters—the higher the concentration, the larger the bloom. Observations show blooms typically last until late spring or early summer, when nutrient stocks are in decline and predatory zooplankton start to graze. The visualization on the left immediately below uses NASA SeaWiFS data to map bloom populations. [16]

The NAAMES study conducted between 2015 and 2019 investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. [26]

In France, citizens are requested to report coloured waters through the project PHENOMER. [27] This helps to understand the occurrence of marine blooms.[ citation needed ]

Wildfires can cause phytoplankton blooms via oceanic deposition of wildfire aerosols. [28]

Harmful algal blooms

Satellite image of phytoplankton swirling around the Swedish island of Gotland in the Baltic Sea, in 2005 Van Gogh from Space.jpg
Satellite image of phytoplankton swirling around the Swedish island of Gotland in the Baltic Sea, in 2005

A harmful algal bloom (HAB) is an algal bloom that causes negative impacts to other organisms via production of natural toxins, mechanical damage to other organisms, or by other means. The diversity of these HABs make them even harder to manage, and present many issues, especially to threatened coastal areas. [29] HABs are often associated with large-scale marine mortality events and have been associated with various types of shellfish poisonings. [30] Due to their negative economic and health impacts, HABs are often carefully monitored. [31] [32]

HAB has been proved to be harmful to humans. Humans may be exposed to toxic algae by direct consuming seafood containing toxins, swimming or other activities in water, and breathing tiny droplets in the air that contain toxins. [33] Because human exposure can take place by consuming seafood products that contain the toxins expelled by HAB algae, food-borne diseases are present and can affect the nervous, digestive, respiratory, hepatic, dermatological, and cardiac systems in the body. [34] Beach users have often experienced upper respiratory diseases, eye and nose irritation, fever, and have often needed medical care in order to be treated. Ciguatera fish poisoning (CFP) is very common from the exposure of algal blooms. Water-borne diseases are also present as our drinking waters can be contaminated by cyanotoxins.

If the HAB event results in a high enough concentration of algae the water may become discoloured or murky, varying in colour from purple to almost pink, normally being red or green. Not all algal blooms are dense enough to cause water discolouration.[ citation needed ]

Bioluminescence

Dinoflagellates are microbial eukaryotes that link bioluminesce and toxin production in algal blooms. [35] They use a luciferin-luciferase reaction to create a blue light emission glow. [36] There are seventeen major types of dinoflagellate toxins, in which the strains, Saxitoxin and Yessotoxin, are both bioluminescent and toxic. These two strains are found to have similar niches in coastal areas. A surplus of Dinoflagellates in the night time creates a blue-green glow, however, in the day, it presents as a red brown color which names algal blooms, Red Tides. Dinoflagellates have been reported to be the cause of seafood poisoning from the neurotoxins. [37]

Management

There are three major categories for management of Algal blooms consisting of mitigation, prevention, and control, [38] Within mitigation, routine monitoring programs are implemented for toxins in shellfish and an overall surveillance of the area. The HAB levels of the shellfish will be determined and can manage restrictions to keep contaminated shellfish off the food market. Moving fish pens away from algal blooms is also another form of mitigation. Within prevention, this category is less known but policy changes are implemented to control sewage and waste. Within control, there are mechanical, biological, chemical, genetic and environmental controls. Mechanical control involves dispersing clay into the water to aggregate with the HAB leading to less of these HAB to go through the process of sedimentation. Biological control varies largely and can be used through pheromones or releasing sterile males to reduce reproduction. Chemical control uses toxic chemical release. However, it may cause problems of mortality of other non targeted organisms. Genetic control involves genetically engineering species in their environmental tolerances and reproduction processes. However, there are problems of harming indigenous organisms. For environmental control, it can use water circulation and aeration.

See also

Related Research Articles

<span class="mw-page-title-main">Phytoplankton</span> Autotrophic members of the plankton ecosystem

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and, meaning 'wanderer' or 'drifter'.

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in water

Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of microorganisms that may deplete the water of oxygen. Although eutrophication is a natural process, manmade or cultural eutrophication is far more common and is a rapid process caused by a variety of polluting inputs including poorly treated sewage, industrial wastewater, and fertilizer runoff. Such nutrient pollution usually causes algal blooms and bacterial growth, resulting in the depletion of dissolved oxygen in water and causing substantial environmental degradation.

<span class="mw-page-title-main">Cyanotoxin</span> Toxin produced by cyanobacteria

Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.

<span class="mw-page-title-main">Algal mat</span> Microbial mat that forms on the surface of water or rocks

Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.

<span class="mw-page-title-main">Paralytic shellfish poisoning</span> Syndrome of shellfish poisoning

Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.

Amnesic shellfish poisoning (ASP) is an illness caused by consumption of shellfish that contain the marine biotoxin called domoic acid. In mammals, including humans, domoic acid acts as a neurotoxin, causing permanent short-term memory loss, brain damage, and death in severe cases.

<i>Karenia brevis</i> Species of dinoflagellate

Karenia brevis is a microscopic, single-celled, photosynthetic organism in the genus Karenia. It is a marine dinoflagellate commonly found in the waters of the Gulf of Mexico. It is the organism responsible for the "Florida red tides" that affect the Gulf coasts of Florida and Texas in the U.S., and nearby coasts of Mexico. K. brevis has been known to travel great lengths around the Florida peninsula and as far north as the Carolinas.

<span class="mw-page-title-main">Predatory dinoflagellate</span>

Predatory dinoflagellates are predatory heterotrophic or mixotrophic alveolates that derive some or most of their nutrients from digesting other organisms. About one half of dinoflagellates lack photosynthetic pigments and specialize in consuming other eukaryotic cells, and even photosynthetic forms are often predatory.

<span class="mw-page-title-main">Harmful algal bloom</span> Population explosion of organisms that can kill marine life

A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".

<i>Karenia</i> (dinoflagellate) Genus of single-celled organisms

Karenia is a genus that consists of unicellular, photosynthetic, planktonic organisms found in marine environments. The genus currently consists of 12 described species. They are best known for their dense toxic algal blooms and red tides that cause considerable ecological and economical damage; some Karenia species cause severe animal mortality. One species, Karenia brevis, is known to cause respiratory distress and neurotoxic shellfish poisoning (NSP) in humans.

<i>Pseudo-nitzschia</i> Genus of marine planktonic diatoms

Pseudo-nitzschia is a marine planktonic diatom genus that accounts for 4.4% of pennate diatoms found worldwide. Some species are capable of producing the neurotoxin domoic acid (DA), which is responsible for the neurological disorder in humans known as amnesic shellfish poisoning (ASP). Currently, 58 species are known, 28 of which have been shown to produce DA. It was originally hypothesized that only dinoflagellates could produce harmful algal toxins, but a deadly bloom of Pseudo-nitzschia occurred in 1987 in the bays of Prince Edward Island, Canada, and led to an outbreak of ASP. Over 100 people were affected by this outbreak after consuming contaminated mussels; three people died. Since this event, no additional deaths have been attributed to ASP, though the prevalence of toxic diatoms and DA has increased worldwide. This anomaly is likely due to increased awareness of harmful algal blooms (HABs) and their implications for human and ecosystem health.

<i>Akashiwo sanguinea</i> Species of single-celled organism

Akashiwo sanguinea is a species of marine dinoflagellates well known for forming blooms that result in red tides. The organism is unarmored (naked). Therefore, it lacks a thick cellulose wall, the theca, common in other genera of dinoflagellates. Reproduction of the phytoplankton species is primarily asexual.

Phycotoxins are complex allelopathic chemicals produced by eukaryotic and prokaryotic algal secondary metabolic pathways. More simply, these are toxic chemicals synthesized by photosynthetic organisms. These metabolites are not harmful to the producer but may be toxic to either one or many members of the marine food web. This page focuses on phycotoxins produced by marine microalgae; however, freshwater algae and macroalgae are known phycotoxin producers and may exhibit analogous ecological dynamics. In the pelagic marine food web, phytoplankton are subjected to grazing by macro- and micro-zooplankton as well as competition for nutrients with other phytoplankton species. Marine bacteria try to obtain a share of organic carbon by maintaining symbiotic, parasitic, commensal, or predatory interactions with phytoplankton. Other bacteria will degrade dead phytoplankton or consume organic carbon released by viral lysis. The production of toxins is one strategy that phytoplankton use to deal with this broad range of predators, competitors, and parasites. Smetacek suggested that "planktonic evolution is ruled by protection and not competition. The many shapes of plankton reflect defense responses to specific attack systems". Indeed, phytoplankton retain an abundance of mechanical and chemical defense mechanisms including cell walls, spines, chain/colony formation, and toxic chemical production. These morphological and physiological features have been cited as evidence for strong predatory pressure in the marine environment. However, the importance of competition is also demonstrated by the production of phycotoxins that negatively impact other phytoplankton species. Flagellates are the principle producers of phycotoxins; however, there are known toxigenic diatoms, cyanobacteria, prymnesiophytes, and raphidophytes. Because many of these allelochemicals are large and energetically expensive to produce, they are synthesized in small quantities. However, phycotoxins are known to accumulate in other organisms and can reach high concentrations during algal blooms. Additionally, as biologically active metabolites, phycotoxins may produce ecological effects at low concentrations. These effects may be subtle, but have the potential to impact the biogeographic distributions of phytoplankton and bloom dynamics.

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton.

<i>Pyrodinium</i> Species of protist

Pyrodinium is a genus of dinoflagellates. It was first discovered in 1906 in the waters around New Providence Island in the Bahamas. Pyrodinium is a monospecific species with two varieties, Pyrodinium bahamense var. compressum and Pyrodinium bahamanse var. bahamense. Pyrodinium is well known for producing Paralytic Shellfish Toxins (PSTs), e.g. saxitoxin, and the bioluminescence that lights up the bioluminescent bays in the Bahamas, Jamaica and Puerto Rico.

Alexandrium catenella is a species of dinoflagellates. It is among the group of Alexandrium species that produce toxins that cause paralytic shellfish poisoning, and is a cause of red tide. ‘’Alexandrium catenella’’ is observed in cold, coastal waters, generally at temperate latitudes. These organisms have been found in the west coast of North America, Japan, Australia, and parts of South Africa.

<i>Cochlodinium polykrikoides</i> Species of single-celled organism

Cochlodinium polykrikoides is a species of red tide producing marine dinoflagellates known for causing fish kills around the world, and well known for fish kills in marine waters of Southeast Asia. C. polykrikoides has a wide geographic range, including North America, Central America, Western India, Southwestern Europe and Eastern Asia. Single cells of this species are ovoidal in shape, 30-50μm in length and 25-30μm in width.

<span class="mw-page-title-main">Harmful Algal Bloom and Hypoxia Research and Control Amendments Act of 2013</span> U.S. public law

The Harmful Algal Bloom and Hypoxia Research and Control Amendments Act of 2014 is a U.S. public law that reauthorizes and modifies the Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 and would authorize the appropriation of $20.5 million annually through 2018 for the National Oceanic and Atmospheric Administration (NOAA) to mitigate the harmful effects of algal blooms and hypoxia.

<span class="mw-page-title-main">Mixotrophic dinoflagellate</span> Plankton

Dinoflagellates are eukaryotic plankton, existing in marine and freshwater environments. Previously, dinoflagellates had been grouped into two categories, phagotrophs and phototrophs. Mixotrophs, however include a combination of phagotrophy and phototrophy. Mixotrophic dinoflagellates are a sub-type of planktonic dinoflagellates and are part of the phylum Dinoflagellata. They are flagellated eukaryotes that combine photoautotrophy when light is available, and heterotrophy via phagocytosis. Dinoflagellates are one of the most diverse and numerous species of phytoplankton, second to diatoms.

Pseudo-nitzschia australis is a pennate diatom found in temperate and sub-tropic marine waters, such as off the coast of California and Argentina. This diatom is a Harmful Micro Algae that produces toxic effects on a variety of organisms through its production of domoic acid, a neurotoxin. Toxic effects have been observed in a variety of predatory organisms such as pelicans, sea lions, and humans. If exposed to a high enough dose, these predators will die as a result, and there is no known antidote. The potential indirect mortality associated with P. australis is of great concern to humans as toxic algae blooms, including blooms of P. australis, continue to increase in frequency and severity over recent years. Blooms of P. australis are believed to result from high concentrations of nitrates and phosphates in stream and river runoff, as well as coastal upwelling, which are also sources of other harmful algae blooms.

References

  1. Ferris, Robert (26 July 2016). "Why are there so many toxic algae blooms this year". CNBC . Retrieved 27 July 2016.
  2. 1 2 3 4 5 6 Barsanti, Laura; Gualtieri, Paolo (2014). Algae: Anatomy, Biochemistry, And Biotechnology. Boca Raton, FL: CRC Press. p. 1. ISBN   978-1-4398-6733-4.
  3. Smayda, Theodore J. (July 1997). "What is a bloom? A commentary". Limnology and Oceanography. 42 (5part2): 1132–1136. Bibcode:1997LimOc..42.1132S. doi: 10.4319/lo.1997.42.5_part_2.1132 .
  4. Mays, Chris; McLoughlin, Stephen; Frank, Tracy D.; Fielding, Christopher R.; Slater, Sam M.; Vajda, Vivi (17 September 2021). "Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction". Nature Communications . 12 (1): 5511. Bibcode:2021NatCo..12.5511M. doi:10.1038/s41467-021-25711-3. PMC   8448769 . PMID   34535650.
  5. 1 2 Smayda, Theodore J. (1997). "What is a bloom? A commentary". Limnology and Oceanography. 42 (5part2): 1132–1136. Bibcode:1997LimOc..42.1132S. doi: 10.4319/lo.1997.42.5_part_2.1132 . ISSN   1939-5590.
  6. Tett, P (1987). "The Ecophysiology of Exceptional Blooms". Rapp. P.-v. Reun. Cons. Int. Explor. Mer. 187: 47–60.
  7. Jonsson, Per R.; Pavia, Henrik; Toth, Gunilla (7 July 2009). "Formation of harmful algal blooms cannot be explained by allelopathic interactions". Proceedings of the National Academy of Sciences of the United States of America. 106 (27): 11177–11182. Bibcode:2009PNAS..10611177J. doi: 10.1073/pnas.0900964106 . ISSN   0027-8424. PMC   2708709 . PMID   19549831.
  8. Kim, H.G. (1993). "Population cell volume and carbon content in monospecific dinoflagellate blooms". Toxic phytoplankton blooms in the sea. Developments in Marine Biology. Vol. 3. Elsevier. pp. 769–773.
  9. Parker, M (1987). "Exceptional Plankton Blooms Conclusion of Discussions: Convener's Report". Rapp. P.-v. Reun. Cons. Int. Explor. Mer. 187: 108–114.
  10. 1 2 Carstensen, Jacob; Henriksen, Peter; Heiskanen, Anna-Stiina (January 2007). "Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication". Limnology and Oceanography. 52 (1): 370–384. Bibcode:2007LimOc..52..370C. doi:10.4319/lo.2007.52.1.0370. ISSN   0024-3590. S2CID   15978578.
  11. Hallegraeff, Gustaaf M.; Anderson, Donald Mark; Cembella, Allan D.; Enevoldsen, Henrik O. (2004). Manual on harmful marine microalgae (Second revised ed.). Paris: UNESCO. ISBN   9231039482. OCLC   493956343.
  12. Gilbert, Patricia M.; Anderson, Donald M.; Gentien, Patrick; Graneli, Edna; Sellner, Kevin G. (2005). "The Global Complex Phenomena of Harmful Algal Blooms". Oceanography. 8 (2): 130–141.
  13. Jacoby, Jean M; Collier, Diane C; Welch, Eugene B; Hardy, F Joan; Crayton, Michele (2000). "Environmental factors associated with a toxic bloom of Microcystis aeruginosa". Canadian Journal of Fisheries and Aquatic Sciences. 57 (1): 231–240. doi:10.1139/f99-234. ISSN   0706-652X.
  14. Liu, Dongyan; Keesing, John K.; Xing, Qianguo; Shi, Ping (1 June 2009). "World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China". Marine Pollution Bulletin. 58 (6): 888–895. Bibcode:2009MarPB..58..888L. doi:10.1016/j.marpolbul.2009.01.013. ISSN   0025-326X. PMID   19261301.
  15. Hallegraef, G.M. (1993). "A review of harmful algal blooms and their apparent global increase". Phycologia. 32 (2): 79–99. Bibcode:1993Phyco..32...79H. doi:10.2216/i0031-8884-32-2-79.1.
  16. 1 2 3 Super Blooms NASA Visualization Explorer, 8 May 2012. PD-icon.svg This article incorporates text from this source, which is in the public domain .
  17. Coastal Phytoplankton on the Rise 30 May 2023, NASA Earth Observatory . PD-icon.svg This article incorporates text from this source, which is in the public domain .
  18. Dai, Yanhui; Yang, Shangbo; Zhao, Dan; Hu, Chuanmin; Xu, Wang; Anderson, Donald M.; Li, Yun; Song, Xiao-Peng; Boyce, Daniel G.; Gibson, Luke; Zheng, Chunmiao; Feng, Lian (1 March 2023). "Coastal phytoplankton blooms expand and intensify in the 21st century". Nature. 615 (7951). Springer Science and Business Media LLC: 280–284. Bibcode:2023Natur.615..280D. doi:10.1038/s41586-023-05760-y. ISSN   0028-0836. PMC   9995273 . PMID   36859547. S2CID   257282794.
  19. Diersling, Nancy. "Phytoplankton Blooms: The Basics" (PDF). Florida Keys National Marine Sanctuary. NOAA. Archived (PDF) from the original on 15 October 2011. Retrieved 26 December 2012.
  20. Hochanadel, Dave (10 December 2010). "Limited amount of total phosphorus actually feeds algae, study finds". Lake Scientist. Retrieved 10 June 2012. [B]ioavailable phosphorus – phosphorus that can be utilized by plants and bacteria – is only a fraction of the total, according to Michael Brett, a UW engineering professor ...
  21. Gilbert, P. A.; Dejong, A. L. (1978). "The Use of Phosphate in Detergents and Possible Replacements for Phosphate". In Ruth Porter; David W. Fitzsimons (eds.). Ciba Foundation Symposium 57 - Phosphorus in the Enviroment: Its Chemistry and Biochemistry. Novartis Foundation Symposia. Vol. 57. pp. 253–268. doi:10.1002/9780470720387.ch14. ISBN   9780470720387. PMID   249679.{{cite book}}: |journal= ignored (help)
  22. Higgins, Scott N.; Paterson, Michael J.; Hecky, Robert E.; Schindler, David W.; Venkiteswaran, Jason J.; Findlay, David L. (September 2018). "Biological Nitrogen Fixation Prevents the Response of a Eutrophic Lake to Reduced Loading of Nitrogen: Evidence from a 46-Year Whole-Lake Experiment". Ecosystems. 21 (6): 1088–1100. Bibcode:2018Ecosy..21.1088H. doi:10.1007/s10021-017-0204-2. ISSN   1432-9840. S2CID   26030685.
  23. "Storm-triggered, increased supply of sediment-derived phosphorus to the epilimnion in a small freshwater lake". Freshwater Biological Association. 18 November 2014. Archived from the original on 26 October 2019. Retrieved 26 October 2019.
  24. Lathrop, Richard C.; Carpenter, Stephen R.; Panuska, John C.; Soranno, Patricia A.; Stow, Craig A. (1 May 1998). "Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota". Canadian Journal of Fisheries and Aquatic Sciences. 55 (5): 1169–1178. doi:10.1139/cjfas-55-5-1169 . Retrieved 13 April 2008.
  25. Behrenfeld, M.J. and Boss, E.S. (2018) "Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles". Global change biology, 24(1): 55–77. doi : 10.1111/gcb.13858.
  26. Behrenfeld, Michael J.; Moore, Richard H.; Hostetler, Chris A.; Graff, Jason; Gaube, Peter; Russell, Lynn M.; Chen, Gao; Doney, Scott C.; Giovannoni, Stephen; Liu, Hongyu; Proctor, Christopher (22 March 2019). "The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview". Frontiers in Marine Science. 6: 122. doi: 10.3389/fmars.2019.00122 . ISSN   2296-7745.
  27. "Phenomer". www.phenomer.org. Retrieved 22 February 2022.
  28. Tang, Weiyi; Llort, Joan; Weis, Jakob; Perron, Morgane M. G.; Basart, Sara; Li, Zuchuan; Sathyendranath, Shubha; Jackson, Thomas; Sanz Rodriguez, Estrella; Proemse, Bernadette C.; Bowie, Andrew R.; Schallenberg, Christina; Strutton, Peter G.; Matear, Richard; Cassar, Nicolas (September 2021). "Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires". Nature. 597 (7876): 370–375. Bibcode:2021Natur.597..370T. doi:10.1038/s41586-021-03805-8. hdl: 2117/351768 . ISSN   1476-4687. PMID   34526706. S2CID   237536378.
  29. Anderson, Donald (January 2004). "Prevention, control and mitigation of harmful algal blooms: multiple approaches to HAB management". ResearchGate. p. 2. Retrieved 26 March 2020.
  30. "Harmful Algal Blooms: Red Tide: Home". cdc.gov. Archived from the original on 27 August 2009. Retrieved 23 August 2009.
  31. Florida Fish and Wildlife Research Institute. "Red Tide Current Status Statewide Information". research.myfwc.com. Archived from the original on 22 August 2009. Retrieved 23 August 2009.
  32. "Red Tide Index". Tpwd.state.tx.us. Retrieved 23 August 2009.
  33. "Illness and Symptoms: Marine (Saltwater) Algal Blooms | Harmful Algal Blooms". CDC. 30 September 2021. Retrieved 10 January 2022.
  34. Berdalet, Elisa; Fleming, Lora E.; Gowen, Richard; Davidson, Keith; Hess, Philipp; Backer, Lorraine C.; Moore, Stephanie K.; Hoagland, Porter; Enevoldsen, Henrik (2015). "Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century". Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom. 2015: 61–91. doi:10.1017/S0025315415001733. ISSN   0025-3154. PMC   4676275 . PMID   26692586.
  35. Cusick, Kathleen D.; Widder, Edith A. (1 September 2020). "Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability". Harmful Algae. 98: 101850. doi:10.1016/j.hal.2020.101850. ISSN   1568-9883. PMID   33129462.
  36. Perin, Luíza S.; Moraes, Gabriela V.; Galeazzo, Gabriela A.; Oliveira, Anderson G. (January 2022). "Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment". International Journal of Molecular Sciences. 23 (21): 13012. doi: 10.3390/ijms232113012 . ISSN   1422-0067.
  37. Wang, Da-Zhi (June 2008). "Neurotoxins from Marine Dinoflagellates: A Brief Review". Marine Drugs. 6 (2): 349–371. doi: 10.3390/md20080016 . PMC   2525493 . PMID   18728731.
  38. Anderson, Donald M. (July 2009). "Approaches to monitoring, control and management of harmful algal blooms (HABs)". Ocean & Coastal Management. 52 (7): 342–347. Bibcode:2009OCM....52..342A. doi:10.1016/j.ocecoaman.2009.04.006. PMC   2818325 . PMID   20161650.