Circuit integrity

Last updated
Circuit integrity fireproofing of cable trays using calcium silicate board system Promat signum tray cladding 1.jpg
Circuit integrity fireproofing of cable trays using calcium silicate board system
Circuit integrity fireproofing of cable trays Promat signum tray cladding 3 mod.jpg
Circuit integrity fireproofing of cable trays
Fire-resistant cables MICCCable.jpg
Fire-resistant cables
MI cables fastened into junction box that has not been fireproofed Miccable.jpg
MI cables fastened into junction box that has not been fireproofed

Circuit integrity is how little can a fire affect an electrical circuit's operation. It is a form of fire-resistance rating. Circuit integrity is achieved via passive fire protection means, which are subject to listing and approval use and compliance. Alternatively, cable construction and materials can achieve fire-resistance ratings on their own such as mineral-insulated copper-clad cable, or MI cable.

Contents

Fireproofing

Providing fireproofing for cables, cable trays, or electrical conduit, is meant to keep cables operational during a specified fire exposure and time, achieved by either:

Testing and certification

Testing in Canada is in accordance with ULC-S101 as required by the local building code.

Inherently fire resistive cables can be tested to UL 2196, Tests for Fire Resistive Cables, whereas enclosures for cables that are not inherently fire resistive can be tested to UL 1724 or USNRC Generic Letter 86-10, Supplement 1 in North America, or BS476 in the United Kingdom or DIN4102 in Germany.

For Petrochemical Industries, Offshore/ Onshore, API 2218 standards are referred as the fireproofing guidelines to address hydrocarbon fires which are more severe than the cellulosic fire profiles used in DIN 4102 and BS 476 part 20 test standards for buildings.

Shaft wall systems

Cables can be protected from fire by enclosing them in fire resistive "shaft wall" systems which are vertical and horizontal enclosures similar to ducts.

Current test methods

Germany has standardised testing via DIN4102 which encompasses both enclosures for cabling and bus ducts as well as inherently fire-resistive cables such as mineral insulated cables.

North America testing includes UL1724 Standard for Tests of Thermal Barrier Systems for Electrical System Components and UL2196 Standard for Tests of Fire Resistive Cables.

Ampacity derating

If a cable is covered with a materiel which restricts heat transfer and therefore prevents it from cooling, the elevated temperature can reduce the allowable cable power capacity (i.e., less ampacity). Derating refers to the reduction of the ability of a cable to conduct electricity.

Cladding and wrapping considerations

The added weight of the wrap systems must be included in static and seismic calculations. Fireproofing of the hanging system must also be considered. Regular maintenance must be considered, as cladding and wraps are not load-bearing and can be damaged during normal building or facility operations.

Terminals and junction box considerations

The entire circuit must be completely protected including termination points and junction boxes.

See also

Related Research Articles

<span class="mw-page-title-main">Firewall (construction)</span> Barrier used to prevent the spread of fire through or between structures

A firewall is a fire-resistant barrier used to prevent the spread of fire. Firewalls are built between or through buildings, structures, or electrical substation transformers, or within an aircraft or vehicle.

<span class="mw-page-title-main">UL (safety organization)</span> Global safety certification company

The UL enterprise is a global safety science company headquartered in Northbrook, Illinois, composed of three organizations, UL Research Institutes, UL Standards & Engagement and UL Solutions.

Electrical wiring in North America follows the regulations and standards applicable at the installation location. It is also designed to provide proper function, and is also influenced by history and traditions of the location installation.

<span class="mw-page-title-main">Safe</span> Secure lockable box used for securing valuable objects

A safe is a secure lockable enclosure used for securing valuable objects against theft or fire. A safe is usually a hollow cuboid or cylinder, with one face being removable or hinged to form a door. The body and door may be cast from metal or formed out of plastic through blow molding. Bank teller safes typically are secured to the counter, have a slit opening for dropping valuables into the safe without opening it, and a time-delay combination lock to foil thieves. One significant distinction between types of safes is whether the safe is secured to a wall or structure or if it can be moved around.

<span class="mw-page-title-main">Electrical wiring</span> Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

<span class="mw-page-title-main">Switchgear</span> Control gear of an electric power system

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

<span class="mw-page-title-main">Mineral-insulated copper-clad cable</span>

Mineral-insulated copper-clad cable is a variety of electrical cable made from copper conductors inside a copper sheath, insulated by inorganic magnesium oxide powder. The name is often abbreviated to MICC or MI cable, and colloquially known as pyro. A similar product sheathed with metals other than copper is called mineral-insulated metal-sheathed (MIMS) cable.

<span class="mw-page-title-main">Fireproofing</span> Rendering something (structures, materials, etc.) resistant to fire, or incombustible

Fireproofing is rendering something resistant to fire, or incombustible; or material for use in making anything fire-proof. It is a passive fire protection measure. "Fireproof" or "fireproofing" can be used as a noun, verb or adjective; it may be hyphenated ("fire-proof").

A firestop or fire-stopping is a form of passive fire protection that is used to seal around openings and between joints in a fire-resistance-rated wall or floor assembly. Firestops are designed to maintain the fire-resistance rating of a wall or floor assembly intended to impede the spread of fire and smoke.

<span class="mw-page-title-main">Passive fire protection</span> Component or system to passively prevent the spread of fire

Passive fire protection (PFP) is components or systems of a building or structure that slows or impedes the spread of the effects of fire or smoke without system activation, and usually without movement. Examples of passive systems include floor-ceilings and roofs, fire doors, windows, and wall assemblies, fire-resistant coatings, and other fire and smoke control assemblies. Passive fire protection systems can include active components such as fire dampers.

An electrical junction box is an enclosure housing electrical connections. Junction boxes protect the electrical connections from the weather, as well as protecting people from accidental electric shocks.

<span class="mw-page-title-main">Cable tray</span> Electrical-cable-supporting structure

In the electrical wiring of buildings, a cable tray system is used to support insulated electrical cables used for power distribution, control, and communication. Cable trays are used as an alternative to open wiring or electrical conduit systems, and are commonly used for cable management in commercial and industrial construction. They are especially useful in situations where changes to a wiring system are anticipated, since new cables can be installed by laying them in the tray, instead of pulling them through a pipe.

A fire-resistance rating typically means the duration for which a passive fire protection system can withstand a standard fire resistance test. This can be quantified simply as a measure of time, or it may entail other criteria, involving evidence of functionality or fitness for purpose.

<span class="mw-page-title-main">Fire test</span>

A fire test is a means of determining whether fire protection products meet minimum performance criteria as set out in a building code or other applicable legislation. Successful tests in laboratories holding national accreditation for testing and certification result in the issuance of a certification listing.

<span class="mw-page-title-main">Smoke exhaust ductwork</span>

Smoke exhaust ductwork, in Europe, is typically protected via passive fire protection means, subject to fire testing and listing and approval use and compliance. It is used to remove smoke from buildings, ships or offshore structures to enable emergency evacuation as well as improved firefighting. In North America, fireproofed ductwork may be used for the purpose of smoke exhaust, but it is more common to use unfireproofed return air ductwork, whereby no fire testing or listings are employed to qualify the ductwork for this use.

<span class="mw-page-title-main">Grease duct</span>

A grease duct is a duct that vents grease-laden flammable vapors from commercial cooking equipment such as stoves, deep fryers, and woks to the outside of a building or mobile food preparation trailer. Grease ducts are part of the building's passive fire protection system. The cleaning schedule is typically dictated by fire code or related safety regulations.

<span class="mw-page-title-main">Fire damper</span>

Fire dampers are passive fire protection products used in heating, ventilation, and air conditioning (HVAC) ducts to prevent and isolate the spread of fire inside the ductwork through fire-resistance rated walls and floors. Fire/smoke dampers are similar to fire dampers in fire resistance rating, and also prevent the spread of smoke inside the ducts. When a rise in temperature occurs, the fire damper closes, usually activated by a thermal element which melts at temperatures higher than ambient but low enough to indicate the presence of a fire, allowing springs to close the damper blades. Fire dampers can also close following receipt of an electrical signal from a fire alarm system utilising detectors remote from the damper, indicating the sensing of heat or smoke in the building occupied spaces or in the HVAC duct system.

<span class="mw-page-title-main">Copper conductor</span> Electrical wire or other conductor made of copper

Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor.

<span class="mw-page-title-main">Bus duct</span> Low resistance electrical conductor for high current transmission and distribution

In electric power distribution, a bus duct is a sheet metal duct or also cast resin insulated containing either copper or aluminium busbars for the purpose of conducting a substantial current of electricity. It is an alternative means of conducting electricity to power cables or cable bus.

References