Vermifilter toilet

Last updated

Vermifilter toilet, also known as a primary vermifilter,vermidigester toilet, tiger toilet [1] [2] or tiger worm toilet, [3] is an on-site sanitation system in which human excreta are delivered from a toilet (usually by flushing) onto a medium containing a worm-based ecosystem. Faecal solids are trapped on the surface of the vermifilter where digestion takes place. [2] Liquids typically flow through drainage media, before the effluent is infiltrated into the soil. [2]

Contents

Description

A vermifilter toilet contains composting worms such as Eisenia fetida that digest human faeces, thus reducing the accumulation of solids in the system and reducing the need for frequent emptying, in comparison with pit latrines. Further, worm-based digestion is virtually complete and produces vermicompost, so emptying does not involve handling of sludge or require a specialist service.  This is a key benefit to users, as is the associated lack of smells. [2]  

In field trials in rural India, Chemical oxygen demand (COD) and faecal indicators were reduced by 60% and 99% respectively in the effluent. [2]  

A worm colony can live inside the vermifilter indefinitely as long as the correct environmental conditions are maintained. Worms need air, food (human faeces) and added (flush) water. An aerobic environment must be provided (e.g. ventilation), and the liquid effluent must be able to drain away. It is important to site the vermifilter correctly so that any risk of flooding is avoided.

Maintenance consists of occasionally removing the accumulated vermicompost: it is estimated that vermicompost removal will be required every 6–8 years, about one-half to one-third of the fill rate for an equivalent size of pit latrine with the same number of users. [4] Emptying latrines can be expensive and often comes with smell and contamination issues: in long-term refugees camps vermifilter toilets reduce the need to replace filled pit latrines and are more cost-effective. [5]

A vermifilter toilet provides primary treatment of human excreta. Providing they are used correctly and maintenance is carried out safely they offer an affordable route towards safely managed sanitation, the new ambition for global sanitation, [6] for all.

Examples

History

Anna Edey constructed a vermicomposting flush toilet in 1995, called the Solviva Biocarbon filter system. This was later adapted by Wendy Howard. [20] Dean Cameron in Australia developed the "dowmus" vermifilter toilet in the mid 1990s which morphed into the biolytyx system. [21] Colin Bell from New Zealand began marketing his "wormorator" in the late 1990s, a twin-chamber vermifilter toilet. [22]

Later, attention began to focus on applications in the developing world in 2009-2012 through the Sanitation Ventures project at the London School of Hygiene and Tropical Medicine (LSHTM) funded by a grant from the Bill & Melinda Gates Foundation. This project had the goal of finding solutions to the problem of pit latrine filling: vermifilter toilets appeared to be an attractive option. Colin Bell provided the design [21] and technical development was led by Claire Furlong in collaboration with Professor Michael Templeton of Imperial College London, [23] [24] and was carried out at the Centre for Advanced Technology (CAT) in Wales. [25] By the end of the project, the team had built a usable prototype at CAT, [1] determined key operating parameters [2] [26] and shown that there was consumer interest.

In parallel with the LSHTM work and also with Bill and Melinda Gates Foundation funding, Biofilcom (under Kweko Annu) developed a vermifilter toilet which has been commercialised in Ghana and Bangladesh. Development of the GSAP (Ghana Sustainable Aid Project) Microflush vermifilter toilet was also funded by the Bill and Melinda Gates Foundation.

Oxfam subsequently funded the construction of field-based trials in Ethiopia (in 2013), Liberia (in 2013 [27] ), while ACTED funded the development and construction of a communal (school) vermifilter toilet in Pakistan.

In continuation of the earlier Sanitation Ventures work, in 2013 Bear Valley Ventures was awarded a Development Innovation Ventures grant from USAID to support field testing in three countries and three different settings. This work was carried out in partnership with Oxfam (humanitarian relief camp, Myanmar), Water for People (peri-urban, Uganda) and PriMove (rural, India). After a year long trial the conclusion was that it worked well in all three settings: the results from India have been published. [2]

After field testing Bear Valley Ventures and PriMove (under Ajeet Oak) continued to collaborate from 2014 onwards on developing and marketing the Tiger Toilet band vermifilter toilet to low income rural and peri-urban households. From 2015-2017 they worked with the Institute for Transformative Technologies [28] (under Shashi Bulaswar) to rigorously test the product and explore paths to scale. In 2018 Bear Valley Ventures and PriMove set up TBF Environmental Solutions Pvt Ltd [12] to commercialise the Tiger Toilet and related technologies.

Oxfam (under Andy Bastable) have collaborated closely with Dr Claire Furlong to further develop applications for emergency and humanitarian camps.

In 2020 the International Worm-based Sanitation Association was formed under the leadership of Prof. Michael Templeton of Imperial College London to share, develop and promote best practice in vermifiltration for sanitation. [29]

See also

Related Research Articles

Compost Mixture used to improve soil fertility

Compost is a mixture of ingredients used to fertilize and improve the soil. It is commonly prepared by decomposing plant and food waste and recycling organic materials. The resulting mixture is rich in plant nutrients and beneficial organisms, such as worms and fungal mycelium. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial colonies of microbes that help to suppress pathogens in the soil.

Vermicompost Product of the composting process using various species of worms

Vermicompost (vermi-compost) is the product of the decomposition process using various species of worms, usually red wigglers, white worms, and other earthworms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vermicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture.

Sanitation Public health conditions related to clean water and proper excreta and sewage disposal

Sanitation refers to public health conditions related to clean drinking water and treatment and disposal of human excreta and sewage. Preventing human contact with feces is part of sanitation, as is hand washing with soap. Sanitation systems aim to protect human health by providing a clean environment that will stop the transmission of disease, especially through the fecal–oral route. For example, diarrhea, a main cause of malnutrition and stunted growth in children, can be reduced through adequate sanitation. There are many other diseases which are easily transmitted in communities that have low levels of sanitation, such as ascariasis, cholera, hepatitis, polio, schistosomiasis, and trachoma, to name just a few.

Composting toilet Type of toilet that treats human excreta by a biological process called composting

A composting toilet is a type of dry toilet that treats human waste by a biological process called composting. This process leads to the decomposition of organic matter and turns human waste into compost-like material. Composting is carried out by microorganisms under controlled aerobic conditions. Most composting toilets use no water for flushing and are therefore called "dry toilets".

Human waste refers to the waste products of the human digestive system, menses, and human metabolism including urine and faeces. As part of a sanitation system that is in place, human waste is collected, transported, treated and disposed of or reused by one method or another, depending on the type of toilet being used, ability by the users to pay for services and other factors. Faecal sludge management is used to deal with fecal matter collected in on-site sanitation systems such as pit latrines and septic tanks.

Pit latrine Toilet that collects human feces in a hole in the ground

A pit latrine, also known as pit toilet, is a type of toilet that collects human feces in a hole in the ground. Urine and feces enter the pit through a drop hole in the floor, which might be connected to a toilet seat or squatting pan for user comfort. Pit latrines can be built to function without water or they can have a water seal. When properly built and maintained, pit latrines can decrease the spread of disease by reducing the amount of human feces in the environment from open defecation. This decreases the transfer of pathogens between feces and food by flies. These pathogens are major causes of infectious diarrhea and intestinal worm infections. Infectious diarrhea resulted in about 700,000 deaths in children under five years old in 2011 and 250 million lost school days. Pit latrines are a low-cost method of separating feces from people.

Bucket toilet Basic form of a dry toilet with a bucket

A bucket toilet is a basic form of a dry toilet whereby a bucket (pail) is used to collect excreta. Usually, feces and urine are collected together in the same bucket, leading to odor issues. The bucket may be situated inside a dwelling, or in a nearby small structure.

Blackwater in a sanitation context denotes wastewater from toilets, which likely contains pathogens which may spread by the fecal–oral route. Blackwater can contain feces, urine, water and toilet paper from flush toilets. Blackwater is distinguished from greywater, which comes from sinks, baths, washing machines, and other kitchen appliances apart from toilets. Greywater results from washing food, clothing, dishes, as well as from showering or bathing.

<i>Eisenia fetida</i> Species of annelid worm

Eisenia fetida, known under various common names such as manure worm, redworm, brandling worm, panfish worm, trout worm, tiger worm, red wiggler worm, etc., is a species of earthworm adapted to decaying organic material. These worms thrive in rotting vegetation, compost, and manure. They are epigean, rarely found in soil. In this trait, they resemble Lumbricus rubellus.

Ecological sanitation Approach to sanitation provision which aims to safely reuse excreta in agriculture

Ecological sanitation, commonly abbreviated as ecosan, is an approach to sanitation provision which aims to safely reuse excreta in agriculture. It is an approach, rather than a technology or a device which is characterized by a desire to "close the loop", mainly for the nutrients and organic matter between sanitation and agriculture in a safe manner. One of the aims is to minimise the use of non-renewable resources. When properly designed and operated, ecosan systems provide a hygienically safe system to convert human excreta into nutrients to be returned to the soil, and water to be returned to the land. Ecosan is also called resource-oriented sanitation.

Sustainable sanitation Sanitation system designed to meet certain criteria and to work well over the long-term

Sustainable sanitation is a sanitation system designed to meet certain criteria and to work well over the long-term. Sustainable sanitation systems consider the entire "sanitation value chain", from the experience of the user, excreta and wastewater collection methods, transportation or conveyance of waste, treatment, and reuse or disposal. The Sustainable Sanitation Alliance (SuSanA) includes five features in its definition of "sustainable sanitation": Systems need to be economically and socially acceptable, technically and institutionally appropriate and protect the environment and natural resources.

Toilet Piece of hardware for the collection or disposal of human excreta

A toilet is a piece of sanitary hardware that collects human urine and feces, and sometimes toilet paper, usually for disposal. Flush toilets use water, while dry or non-flush toilets do not. They can be designed for a sitting position popular in Europe and North America with a toilet seat, with additional considerations for those with disabilities, or for a squatting posture more popular in Asia. In urban areas, flush toilets are usually connected to a sewer system that leads to septic tanks in isolated areas. The waste is known as blackwater and the combined effluent including other sources is sewage. Dry toilets are connected to a pit, removable container, composting chamber, or other storage and treatment device, including urine diversion with a urine-diverting toilet.

Arborloo Composting toilet

An arborloo is a simple type of composting toilet in which feces are collected in a shallow pit and a fruit tree is later planted in the fertile soil of the full pit. Arborloos have: a pit like a pit latrine but less deep; a concrete, ferrocement or other strong floor; a superstructure to provide privacy; and possibly a ring beam to protect the pit from collapsing. The pit should remain well above the water table in the soil, so as to not contaminate groundwater.

Dry toilet Toilet that operates without flush water

A dry toilet is a toilet which, unlike a flush toilet, does not use flush water. Dry toilets do not use water to move excreta along or block odors. They do not produce sewage, and are not connected to a sewer system or septic tank. Instead, excreta falls through a drop hole.

Reuse of human excreta Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

Omni Processor Group of physical, biological or chemical treatments to process fecal sludge

Omni Processor is a term coined in 2012 by staff of the Water, Sanitation, Hygiene Program of the Bill & Melinda Gates Foundation to describe a range of physical, biological or chemical treatments to remove pathogens from human-generated fecal sludge, while simultaneously creating commercially valuable byproducts. An Omni Processor mitigates unsafe methods in developing countries of capturing and treating human waste, which annually result in the spread of disease and the deaths of more than 1.5 million children.

Fecal sludge management Collection, transport, and treatment of fecal sludge from onsite sanitation systems

Fecal sludge management (FSM) is the storage, collection, transport, treatment and safe end use or disposal of fecal sludge. Together, the collection, transport, treatment and end use of fecal sludge constitute the "value chain" or "service chain" of fecal sludge management. Fecal sludge is defined very broadly as what accumulates in onsite sanitation systems and specifically is not transported through a sewer. It is composed of human excreta, but also anything else that may go into an onsite containment technology, such as flushwater, cleansing materials, menstrual hygiene products, grey water, and solid waste. Fecal sludge that is removed from septic tanks is called septage.

Vermifilter Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.

Container-based sanitation Sanitation system which uses mobile containers

Container-based sanitation refers to a sanitation system where toilets collect human excreta in sealable, removable containers that are transported to treatment facilities. This type of sanitation involves a commercial service which provides certain types of portable toilets, and delivers empty containers when picking up full ones. The service transports and safely disposes of or reuses collected excreta. The cost of collection of excreta is usually borne by the users. With suitable development, support and functioning partnerships, CBS can be used to provide low-income urban populations with safe collection, transport and treatment of excrement at a lower cost than installing and maintaining sewers. In most cases, CBS is based on the use of urine-diverting dry toilets.

References

  1. 1 2 Furlong, C.; Gibson, W. T.; Templeton, M. R.; Taillade, M.; Kassam, F.; Crabb, G.; Goodsell, R.; McQuilkin, J.; Oak, A.; Thakar, G.; Kodgire, M. (2015-11-26). "The development of an onsite sanitation system based on vermifiltration: the 'Tiger Toilet'". Journal of Water, Sanitation and Hygiene for Development. 5 (4): 608–613. doi:10.2166/washdev.2015.167. ISSN   2043-9083.
  2. 1 2 3 4 5 6 7 Furlong, C.; Gibson, W. T.; Oak, A.; Thakar, G.; Kodgire, M.; Patankar, R. (2016-04-01). "Technical and user evaluation of a novel worm-based, on-site sanitation system in rural India". Waterlines. 35 (2): 148–162. doi:10.3362/1756-3488.2016.013. ISSN   0262-8104.
  3. Furlong, C.; Lamb, J.; Bastable, A. (2017). Learning from Oxfam's Tiger Worm Toilets projects. 40th WEDC International Conference, Loughborough, UK.
  4. Hylton, Erin; Noad, Liam; Templeton, Michael R.; Sule, May N. (2020-06-29). "The rate of vermi-compost accumulation within 'Tiger Toilets' in India". Environmental Technology: 1–10. doi:10.1080/09593330.2020.1789750. hdl: 10044/1/81148 . ISSN   0959-3330. PMID   32597333. S2CID   220258149.
  5. Snoad, C. (2020). Tiger Worm Toilet: One Stop Shop Manual. GB: Oxfam.
  6. "Progress on drinking water, sanitation and hygiene: Joint Monitoring Programme 2017 update and SDG baselines". World Health Organization. Archived from the original on July 16, 2017.
  7. Parsons, Jeff (15 January 2019). "The story of Bill Gates and the worm-powered toilet that could change the world". Metro. Retrieved 16 December 2019.
  8. "Tiger Toilet - Bear Valley Ventures". engineeringforchange.org. Retrieved 16 December 2019.
  9. "Vermifilters for blackwater treatment, "worm toilets", "Tiger worm toilet"". SuSanA.
  10. Furlong, Claire; Polson, Lucy (11 April 2019). "Are Communal Tiger Worm Toilets a sustainable option for camps?". Oxfam. Retrieved 16 December 2019.
  11. Guilbert, Kieran (8 March 2017). "Tiger worm toilets turn poo into fertilizer in crowded cities and refugee camps". Reuters. Retrieved 16 December 2019.
  12. 1 2 "TBF Environmental".
  13. "Biofilcom".
  14. "Biolytix".
  15. "NaturalFlow". 29 January 2018.
  16. "A&A Worm Farm Waste Systems".
  17. "Permaculture In Portugal".
  18. "Design and construction of a vermicomposting toilet". Vermicomposting Toilets. Retrieved 2021-10-16.
  19. "Vermifilter.com". vermifilter.com.
  20. "Vermicomposting Toilets".
  21. 1 2 "History of vermifilter toilet". SuSanA. 15 February 2020. Retrieved 16 February 2020.
  22. "History of vermifilter toilet and wikipedia article". 15 February 2020.
  23. "Home - Professor Michael Templeton".
  24. "Imperial College London".
  25. "Centre for Alternative Technology".
  26. Furlong, C.; Templeton, M. R.; Gibson, W. T. (2014-03-26). "Processing of human faeces by wet vermifiltration for improved on-site sanitation". Journal of Water, Sanitation and Hygiene for Development. 4 (2): 231–239. doi: 10.2166/washdev.2014.107 . ISSN   2043-9083.
  27. Watako, David; Mougabe, Koslengar; Heath, Thomas (2016). "Tiger worm toilets: lessons learned from constructing household vermicomposting toilets in Liberia". Waterlines. 35 (2): 136–147. doi:10.3362/1756-3488.2016.012. ISSN   0262-8104. JSTOR   26600731.
  28. "Transformative Technologies".
  29. "International Worm Based Sanitation Association".