Space toilet

Last updated

Space toilet Space Toilet (8687080967).jpg
Space toilet

A space toilet or zero-gravity toilet is a toilet that can be used in a weightless environment. In the absence of weight, the collection and retention of liquid and solid waste is directed by use of airflow. Since the air used to direct the waste is returned to the cabin, it is filtered beforehand to control odor and cleanse bacteria. In older systems, wastewater is vented into space, and any solids are compressed and stored for removal upon landing. More modern systems expose solid waste to vacuum pressures to kill bacteria, which prevents odor problems and kills pathogens. [1]

Contents

Background

Astronauts say that they are most often asked how they go to the bathroom in space. [2] In space, weightlessness causes fluids to distribute uniformly around human bodies. Kidneys detect the fluid movement and a physiological reaction causes the humans to need to relieve themselves within two hours of departure from Earth. The space toilet was thus the first device activated on shuttle flights, after astronauts unbuckled themselves. [3]

Mechanism

In the absence of gravity, space toilets use air flow to pull urine and feces away from the body and into the proper receptacles. A new feature of the space toilet is the automatic start of air flow when the toilet lid is lifted, which also helps with odor control. By popular (astronaut) demand, it also includes a more ergonomic design requiring less clean-up and maintenance time, with corrosion-resistant, durable parts to reduce the likelihood of maintenance outside of the set schedule. Less time spent on plumbing means more time for the crew to spend on science and other high-priority exploration focused tasks. [4]

The crew use a specially shaped funnel and hose for urine (suction cup) and the seat for bowel movements. The funnel and seat can be used simultaneously, reflecting feedback from female astronauts. The space toilet seat may look uncomfortably small and pointy, but in microgravity, it is ideal. It provides ideal body contact to make sure that everything goes where it should. [4]

The space toilet includes foot restraints and handholds for astronauts to keep themselves from floating away. Everyone positions themselves differently while “going”, and consistent astronaut feedback indicated that the traditional thigh straps were a hassle. [4]

Toilet paper, wipes, and gloves are disposed of in water-tight bags. Solid waste in individual water-tight bags is compacted in a removable fecal storage canister. A small number of fecal canisters are returned to Earth for evaluation, but most are loaded into a cargo ship that burns up on re-entry through Earth's atmosphere. Currently, fecal waste is not processed for water recovery, but NASA is studying this capability. [4]

Basic parts

Diagram of the elements of the Space Shuttle WCS Space toilet.svg
Diagram of the elements of the Space Shuttle WCS

There are four basic parts in a space toilet: the liquid-waste vacuum tube, the vacuum chamber, the waste storage drawers, and the solid-waste collection bags. The liquid-waste vacuum tube is a 2-to-3-foot (61 to 91 cm) long rubber or plastic hose that is attached to the vacuum chamber and connected to a fan that provides suction. At the end of the tube is a detachable urine receptacle, which comes in different versions for male and female astronauts. The male urine receptacle is a plastic funnel 2 to 3 inches (5 to 8 cm) in width and about 4 inches (10 cm) deep. A male astronaut urinates directly into the funnel from a distance of 2 to 3 inches (5 to 8 cm) away. The female funnel is oval and is 2 by 4 inches (5 by 10 cm) wide at the rim. Near the funnel's rim are small holes or slits that allow air movement to prevent excessive suction. The vacuum chamber is a cylinder about 1-foot (30 cm) deep and 6 inches (15 cm) wide with clips on the rim, where waste collection bags may be attached and a fan that provides suction. Urine is pumped into and stored in waste storage drawers. Solid waste is stored in a detachable bag made of a special fabric that lets gas (but not liquid or solid) escape, a feature that allows the fan at the back of the vacuum chamber to pull the waste into the bag. When the astronaut is finished, he or she then twists the bag and places it in a waste storage drawer. Samples of urine and solid waste are frozen and taken to Earth for testing.

Designs

Space Shuttle Waste Collection System

The toilet used on the Space Shuttle is called the Waste Collection System (WCS). In addition to air flow, it also uses rotating fans to distribute solid waste for in-flight storage. Solid waste is distributed in a cylindrical container, which is then exposed to vacuum to dry the waste. Liquid waste was disposed of by discharging it into space. [6] [ citation needed ]

The WCS required many hours of training. For urination, a hose was used. For defecation, with a 4 inches (100 mm) diameter for the hole in the seat—much smaller than in a conventional toilet—the user's bottom needed to be exactly centered on the seat. NASA built a simulator with a video camera in the hole; those training used a crosshair to learn how to position their bodies, while other astronauts watched and made jokes. [7] [2]

The WCS had several malfunctions in flight. On the eight-day STS-3 test flight, the toilet had broken down, and its two-man crew (Jack Lousma and Gordon Fullerton) resorted to fecal containment devices (FCD) for waste elimination and disposal.[ citation needed ] An anomaly of the liquid disposal system on Discovery during its maiden flight resulted in a buildup of frozen excrements outside the orbiter, which was then removed by means of Canadarm. [6] During STS-46, one of the fans malfunctioned, and crew member Claude Nicollier was required to perform in-flight maintenance (IFM).

International Space Station

Expedition 65 Flight Engineers Mark Vande Hei (from left) and Shane Kimbrough partner together for orbital plumbing tasks as they install a new toilet inside the International Space Station's Tranquility module. Astronauts Mark Vande Hei and Shane Kimbrough work on a new toilet.jpg
Expedition 65 Flight Engineers Mark Vande Hei (from left) and Shane Kimbrough partner together for orbital plumbing tasks as they install a new toilet inside the International Space Station's Tranquility module.

There are three toilets on the International Space Station, located in the Zvezda, Nauka and Tranquility modules. [8] They use a fan-driven suction system similar to the Space Shuttle WCS. Liquid waste is collected in 20-litre (5.3 US gal) containers. Solid waste is collected in individual micro-perforated bags, which are stored in an aluminum container. [9] Full containers are transferred to Progress for disposal. An additional Waste and Hygiene Compartment is part of the Tranquility module launched in 2010. In 2007, NASA purchased a Russian-made toilet similar to the one already aboard ISS rather than develop one internally. [10]

On May 21, 2008, the gas–liquid separator pump failed on the 7-year-old toilet in Zvezda, although the solid-waste portion was still functioning. The crew attempted to replace various parts, but was unable to repair the malfunctioning part. In the interim, they used a manual mode for urine collection. [11] The crew had other options: to use the toilet on the Soyuz transport module (which only has capacity for a few days of use) or to use urine-collection bags as needed. [12] A replacement pump was sent from Russia in a diplomatic pouch, so that Space Shuttle Discovery could take it to the station as part of mission STS-124 on June 2. [13] [14] [15]

Other designs

The Soviet/Russian Space Station Mir's toilet also used a system similar to the WCS. [16]

While the Soyuz spacecraft had an onboard toilet facility since its introduction in 1967 (due to the additional space in the Orbital Module), all Gemini and Apollo spacecraft required astronauts to urinate in a so-called "relief tube", in which the contents were dumped into space, while fecal matter was collected in specially-designed bags. [17] The facilities were so uncomfortable that, to avoid using them, astronauts ate less than half the available food on their flights. [18] The Skylab space station, used by NASA between May 1973 and March 1974, had an onboard WCS facility, which served as a prototype for the Shuttle's WCS, but also featured an onboard shower facility. The Skylab toilet, which was designed and built by the Fairchild Republic Corp. on Long Island, was primarily a medical system to collect and return to Earth samples of urine, feces and vomit, so that calcium balance in astronauts could be studied.

Even with the facilities, astronauts and cosmonauts for both launch systems employ pre-launch bowel clearing and low-residue diets to minimize the need for defecation. [19] The Soyuz toilet has been used on a return mission from Mir. [16]

NPP Zvezda is a Russian developer of space equipment, which includes zero-gravity toilets. [20]

A $23 million next-generation space toilet called the Universal Waste Management System (UWMS) is being developed by NASA for Orion and the International Space Station. [21] [22] The UWMS is the first space toilet designed specifically for women as well as men, easing the use of space toilets for women and use for stool and urine at the same time. It is designed to be fully automated, quieter, lighter, more reliable, more hygienic and more compact than previous systems. [21] [23] Among its innovations, the UWMS relies on a 3D printing technique to incorporate metals including Inconel, Elgiloy, and titanium that can withstand the acids used to treat urine within the toilet. [23] The UWMS was first delivered to the ISS in October 2020.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">International Space Station</span> Largest space station in low Earth orbit

The International Space Station (ISS) is a large space station assembled and maintained in low Earth orbit by a collaboration of five space agencies: NASA, Roscosmos (Russia), JAXA (Japan), ESA (Europe), CSA (Canada), and their contractors. ISS is the largest space station ever built. Its primary purpose is performing microgravity and space environment experiments.

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development.

<i>Mir</i> Soviet/Russian space station that operated in low Earth orbit from 1986 to 2001

Mir was a space station that operated in low Earth orbit from 1986 to 2001, operated by the Soviet Union and later by Russia. Mir was the first modular space station and was assembled in orbit from 1986 to 1996. It had a greater mass than any previous spacecraft. At the time it was the largest artificial satellite in orbit, succeeded by the International Space Station (ISS) after Mir's orbit decayed. The station served as a microgravity research laboratory in which crews conducted experiments in biology, human biology, physics, astronomy, meteorology, and spacecraft systems with a goal of developing technologies required for permanent occupation of space.

<span class="mw-page-title-main">Robert Crippen</span> American astronaut

Robert Laurel Crippen is an American retired naval officer and aviator, test pilot, aerospace engineer, and retired astronaut. He traveled into space four times: as pilot of STS-1 in April 1981, the first Space Shuttle mission; and as commander of STS-7 in June 1983, STS-41-C in April 1984, and STS-41-G in October 1984. He was also a part of the Manned Orbiting Laboratory (MOL), Skylab Medical Experiment Altitude Test (SMEAT), ASTP support crew member, and the Approach and Landing Tests (ALT) for the Space Shuttle.

<span class="mw-page-title-main">STS-106</span> 2000 American crewed spaceflight to the ISS

STS-106 was a 2000 Space Shuttle mission to the International Space Station (ISS) flown by Space Shuttle Atlantis.

<span class="mw-page-title-main">Richard Mastracchio</span> American Astronaut

Richard Alan Mastracchio is an American engineer and former NASA astronaut. He has flown on three NASA Space Shuttle missions as a mission specialist in addition to serving as a flight engineer on the Soyuz TMA-11M long-duration mission aboard the International Space Station. He is currently the senior director of operations for commercial resupply services at Orbital ATK.

<span class="mw-page-title-main">Yuri Usachov</span> Former Russian cosmonaut

Yury Vladimirovich Usachov is a former cosmonaut who resides in Star City, Moscow. Usachov is a veteran of four spaceflights, including two long-duration missions on board the Mir Space Station and another on board the International Space Station. During his career, he also conducted seven spacewalks before his retirement on April 5, 2004.

<i>Zvezda</i> (ISS module) Russian International Space Station module

Zvezda, Salyut DOS-8, also known as the Zvezda Service Module, is a module of the International Space Station (ISS). It was the third module launched to the station, and provided all of the station's life support systems, some of which are supplemented in the US Orbital Segment (USOS), as well as living quarters for two crew members. It is the structural and functional center of the Russian Orbital Segment (ROS), which is the Russian part of the ISS. Crew assemble here to deal with emergencies on the station.

<span class="mw-page-title-main">Extravehicular Mobility Unit</span> Series of semi-rigid two-piece space suit models from the United States

The Extravehicular Mobility Unit (EMU) is an independent anthropomorphic spacesuit that provides environmental protection, mobility, life support, and communications for astronauts performing extravehicular activity (EVA) in Earth orbit. Introduced in 1981, it is a two-piece semi-rigid suit, and is currently one of two types of EVA spacesuits used by crew members on the International Space Station (ISS), the other being the Russian Orlan space suit. It was used by NASA's Space Shuttle astronauts prior to the end of the Shuttle program in 2011.

<span class="mw-page-title-main">Soyuz TM-23</span> 1996 Russian crewed spaceflight to Mir

Soyuz TM-23 was a Soyuz spaceflight which launched on February 21, 1996, to Mir. The spacecraft launched from Baikonur Cosmodrome, and after two days of flight, Yuri Onufrienko and Yury Usachov docked with Mir and became the 21st resident crew of the Station. On September 2, 1996, after 191 days docked with Mir, the ship undocked with the launch crew and Claudie André-Deshays onboard, before eventually landing 107 km (66 mi) south west of Akmola, Kazakhstan.

<span class="mw-page-title-main">Expedition 1</span> First long-duration human stay aboard the International Space Station

Expedition 1 was the first long-duration stay on the International Space Station (ISS). The three-person crew stayed aboard the station for 136 days, from November 2000 to March 2001. It was the beginning of an uninterrupted human presence on the station which continues as of 2024. Expedition 2, which also had three crew members, immediately followed Expedition 1.

Shuttle–<i>Mir</i> program 1993–1998 collaborative Russia–US space program

The Shuttle–Mir program was a collaborative 11-mission space program between Russia and the United States that involved American Space Shuttles visiting the Russian space station Mir, Russian cosmonauts flying on the Shuttle, and an American astronaut flying aboard a Soyuz spacecraft to engage in long-duration expeditions aboard Mir.

<span class="mw-page-title-main">Advanced Crew Escape Suit</span> Full pressure suit

The Advanced Crew Escape Suit (ACES), or "pumpkin suit", is a full pressure suit that Space Shuttle crews began wearing after STS-65, for the ascent and entry portions of flight. The suit is a direct descendant of the U.S. Air Force high-altitude pressure suits worn by the two-man crews of the SR-71 Blackbird, pilots of the U-2 and X-15, and Gemini pilot-astronauts, and the Launch Entry Suits (LES) worn by NASA astronauts starting on the STS-26 flight, the first flight after the Challenger disaster. The suit is manufactured by the David Clark Company of Worcester, Massachusetts. Cosmetically the suit is very similar to the LES. ACES was first used in 1994.

<span class="mw-page-title-main">Expedition 14</span>

Expedition 14 was the 14th expedition to the International Space Station (ISS). Commander Michael López-Alegría, and flight engineer Mikhail Tyurin launched from Baikonur Cosmodrome on 18 September 2006, 04:09 UTC, aboard Soyuz TMA-9. They joined Thomas Reiter, who had arrived at the ISS on 6 July 2006 aboard Space Shuttle Discovery during mission STS-121. In December 2006, Discovery mission STS-116 brought Sunita Williams to replace Reiter as the third member of Expedition 14. On 21 April 2007, López-Alegría and Tyurin returned to Earth aboard TMA-9. Landing occurred at 12:31:30 UTC.

<span class="mw-page-title-main">STS-124</span> 2008 American crewed spaceflight to the ISS

STS-124 was a Space Shuttle mission, flown by Space Shuttle Discovery to the International Space Station. Discovery launched on May 31, 2008, at 17:02 EDT, moved from an earlier scheduled launch date of May 25, 2008, and landed safely at the Kennedy Space Center's Shuttle Landing Facility, at 11:15 EDT on June 14, 2008. Its objective was to deliver the largest module of the space station – Kibō, the Japanese Experiment Module pressurized section. The mission is also referred to as ISS-1J by the ISS program.

<span class="mw-page-title-main">Shannon Walker</span> American scientist and NASA astronaut

Shannon Walker is an American physicist and a NASA astronaut selected in 2004. She launched on her first mission into space on June 25, 2010, onboard Soyuz TMA-19 and spent over 163 days in space.

<span class="mw-page-title-main">Michael Barratt (astronaut)</span> American aerospace medicine physician and a NASA astronaut with two flights

Michael Reed Barratt is an American physician and a NASA astronaut. Specializing in aerospace medicine, he served as a flight surgeon for NASA before his selection as an astronaut, and has played a role in developing NASA's space medicine programs for both the Shuttle-Mir Program and International Space Station. His first spaceflight was a long-duration mission to the International Space Station, as a flight engineer in the Expedition 19 and 20 crew. In March 2011, Barratt completed his second spaceflight as a crew member of STS-133. Barratt will pilot the SpaceX Crew-8 mission in spring 2024.

<span class="mw-page-title-main">Assembly of the International Space Station</span> Process of assembling the International Space Station

The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 Space Shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained uncrewed for the next one and a half years, until in July 2000 the Russian module Zvezda was launched by a Proton rocket, allowing a maximum crew of three astronauts or cosmonauts to be on the ISS permanently.

<span class="mw-page-title-main">Tracy Caldwell Dyson</span> American chemist and NASA astronaut

Tracy Caldwell Dyson is an American chemist and NASA astronaut. She was a mission specialist on Space Shuttle Endeavour flight STS-118 in August 2007 and part of the Expedition 23 and Expedition 24 crew on the International Space Station from April 2010 to September 2010. She has completed three spacewalks, logging more than 22 hours of extravehicular activity. She is scheduled to return to space on March 21, 2024 for a third time on board Soyuz MS-25 for a six-month mission onboard the ISS.

<span class="mw-page-title-main">ISS ECLSS</span> Life support system for the International Space Station

The International Space Station Environmental Control and Life Support System (ECLSS) is a life support system that provides or controls atmospheric pressure, fire detection and suppression, oxygen levels, waste management and water supply. The highest priority for the ECLSS is the ISS atmosphere, but the system also collects, processes, and stores both waste and water produced and used by the crew—a process that recycles fluid from the sink, shower, toilet, and condensation from the air.

References

  1. "Gigapan: Space Shuttle Discovery Toilet". National Geographic. National Geographic Society. Archived from the original on September 5, 2013. Retrieved September 8, 2013.
  2. 1 2 Shuttle's Toilet Requires Special Training (YouTube). NASA. May 5, 2010. Archived from the original on December 14, 2021.
  3. Walker, Charles D. (March 17, 2005). "Oral History 2 Transcript" (PDF). NASA Johnson Space Center Oral History Project (Interview). Interviewed by Ross-Nazzal, Jennifer. Retrieved December 29, 2011.
  4. 1 2 3 4 Elburn, Darcy (August 2, 2019). "Boldly Go! NASA's New Space Toilet". NASA. Retrieved February 7, 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. NASA (November 15, 2001). "Configuration Changes and Certification Status – Shuttle Urine Pre-treat Assembly" (PDF). STS-108 Flight Readiness Review. Archived from the original (PDF) on November 8, 2004. Retrieved December 28, 2006.
  6. 1 2 "35 Years Ago: STS-41D – First Flight of Space Shuttle Discovery - NASA". August 30, 2019. Retrieved December 16, 2023.
  7. Croft, Melvin; Youskauskas, John (2019). Come Fly with Us: NASA's Payload Specialist Program. Outward Odyssey: a People's History of Spaceflight. University of Nebraska Press. p. 15. ISBN   9781496212252.
  8. Cheryl L. Mansfield (November 7, 2008). "Station Prepares for Expanding Crew". NASA. Retrieved September 17, 2009.
  9. Lu, Ed (September 8, 2003). "HSF – International Space Station – "Greetings Earthling"". Archived from the original on September 6, 2003. Retrieved December 21, 2006.
  10. Fareastgizmos.com (July 6, 2007). "19 million US Dollars for a space station toilet" . Retrieved July 9, 2007.
  11. "Toilet trouble for space station". BBC News. May 29, 2008. Retrieved January 4, 2010.
  12. "Space station struggles with balky toilet". NBC News.
  13. "Astronauts To Fix Space Station Toilet". Archived from the original on September 19, 2008.
  14. "ISS – Zvezda Bathroom Repairs and Shuttle Preps for Crew". Archived from the original on July 15, 2012.
  15. "Space Station Toilet Parts Set for Liftoff". RedOrbit. May 29, 2008.
  16. 1 2 Shuttleworth, Mark (February 9, 2002). "Toilet Training". First African in Space. Retrieved December 28, 2006.
  17. Sandra Häuplik-Meusburger: Architecture for astronauts : an activity-based approach. Springer, 2011, ISBN   978-3-7091-0666-2, Hygiene Apollo – Resume Toilett, p. 134–137.
  18. Bourland, Charles T. (April 7, 2006). "Charles T. Bourland". NASA Johnson Space Center Oral History Project (Interview). Interviewed by Ross-Nazzal, Jennifer. Retrieved December 24, 2014.
  19. "Low Residue Diet". Buzzle.com. December 15, 2011. Archived from the original on April 20, 2008. Retrieved May 24, 2012.
  20. "Assenisation Sanity Unit ASU-8A". Zvezda-npp.ru. Archived from the original on February 13, 2012. Retrieved May 24, 2012.
  21. 1 2 James L. Broyan Jr.; Michael K. Ewert; Patrick W. Fink (August 4, 2014). "Logistics Reduction Technologies for Exploration Missions" (PDF). NASA. Archived from the original (PDF) on October 6, 2014. Retrieved September 28, 2014.
  22. Grush, Loren (October 1, 2020). "NASA is about to launch an upgraded microgravity toilet to the International Space Station". The Verge. Retrieved October 3, 2020.
  23. 1 2 Thomas J. Stapleton; Shelley Baccus; James L. Broyan Jr. (January 1, 2013). "Development of a Universal Waste Management System" (PDF). NASA. Archived from the original (PDF) on October 6, 2014. Retrieved September 28, 2014.