Launch pad

Last updated
Launch pad at Kennedy Space Center Launch Complex 39B on Merritt Island, Florida Stspad39baerial.jpg
Launch pad at Kennedy Space Center Launch Complex 39B on Merritt Island, Florida

A launch pad is an above-ground facility from which a rocket-powered missile or space vehicle is vertically launched. [1] The term launch pad can be used to describe just the central launch platform (mobile launcher platform), or the entire complex (launch complex). The entire complex will include a launch mount or launch platform to physically support the vehicle, a service structure with umbilicals, and the infrastructure required to provide propellants, cryogenic fluids, electrical power, communications, telemetry, rocket assembly,[ not verified in body ] payload processing,[ not verified in body ] storage facilities for propellants and gases, equipment, access roads, and drainage.

Contents

Most launch pads include fixed service structures to provide one or more access platforms to assemble, inspect, and maintain the vehicle and to allow access to the spacecraft, including the loading of crew. The pad may contain a flame deflection structure to prevent the intense heat of the rocket exhaust from damaging the vehicle or pad structures, and a sound suppression system spraying large quantities of water may be employed. The pad may also be protected by lightning arresters. A spaceport typically includes multiple launch complexes and other supporting infrastructure.

A launch pad is distinct from a missile launch facility (or missile silo or missile complex), which also launches a missile vertically but is located underground in order to help harden it against enemy attack.

The launch complex for liquid fueled rockets often has extensive ground support equipment including propellant tanks and plumbing to fill the rocket before launch. Cryogenic propellants (liquid oxygen oxidizer, and liquid hydrogen or liquid methane fuel) need to be continuously topped off (i.e., boil-off replaced) during the launch sequence (countdown), as the vehicle awaits liftoff. This becomes particularly important as complex sequences may be interrupted by planned or unplanned holds to fix problems.

Most rockets need to be supported and held down for a few seconds after ignition while the engines build up to full thrust. The vehicle is commonly held on the pad by hold-down arms or explosive bolts, which are triggered when the vehicle is stable and ready to fly, at which point all umbilical connections with the pad are released.

Transport of rockets to the pad

Transport of Soyuz rocket to pad by train Soyuz Rolls Out.jpg
Transport of Soyuz rocket to pad by train
Transport of Space Shuttle and MLP to pad on Crawler-transporter STS-114 rollout.jpg
Transport of Space Shuttle and MLP to pad on Crawler-transporter
SLC-40 with SpaceX Falcon 9 launch infrastructure. The four towers surrounding the rocket are lightning arresters, and acts like a giant Faraday cage Falcon 9 preparing to launch DSCOVR (16673054016).jpg
SLC-40 with SpaceX Falcon 9 launch infrastructure. The four towers surrounding the rocket are lightning arresters, and acts like a giant Faraday cage

.

Each launch site is unique, but a few broad types can be described by the means by which the space vehicle gets to the pad.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

The SM-65 Atlas was the first operational intercontinental ballistic missile (ICBM) developed by the United States and the first member of the Atlas rocket family. It was built for the U.S. Air Force by the Convair Division of General Dynamics at an assembly plant located in Kearny Mesa, San Diego.

<span class="mw-page-title-main">Vandenberg Space Force Base</span> United States Air Force Base near Los Angeles

Vandenberg Space Force Base, previously Vandenberg Air Force Base, is a United States Space Force Base in Santa Barbara County, California. Established in 1941, Vandenberg Space Force Base is a space launch base, launching spacecraft from the Western Range, and also performs missile testing. The United States Space Force's Space Launch Delta 30 serves as the host delta for the base. In addition to its military space launch mission, Vandenberg Air Force Base also hosts space launches for civil and commercial space entities, such as NASA and SpaceX.

<span class="mw-page-title-main">Soyuz (rocket family)</span> Russian and Soviet rocket family

Soyuz is a family of expendable Russian and Soviet carrier rockets developed by OKB-1 and manufactured by Progress Rocket Space Centre in Samara, Russia. With over 1,900 flights since its debut in 1966, the Soyuz is the rocket with the most launches in the history of spaceflight.

<span class="mw-page-title-main">Spaceport</span> Location used to launch and receive spacecraft

A spaceport or cosmodrome is a site for launching or receiving spacecraft, by analogy to a seaport for ships or an airport for aircraft. The word spaceport, and even more so cosmodrome, has traditionally been used for sites capable of launching spacecraft into orbit around Earth or on interplanetary trajectories. However, rocket launch sites for purely sub-orbital flights are sometimes called spaceports, as in recent years new and proposed sites for suborbital human flights have been frequently referred to or named "spaceports". Space stations and proposed future bases on the Moon are sometimes called spaceports, in particular if intended as a base for further journeys.

<span class="mw-page-title-main">HGM-25A Titan I</span> Early American intercontinental ballistic missile

The Martin Marietta SM-68A/HGM-25A Titan I was the United States' first multistage intercontinental ballistic missile (ICBM), in use from 1959 until 1962. Though the SM-68A was operational for only three years, it spawned numerous follow-on models that were a part of the U.S. arsenal and space launch capability. The Titan I was unique among the Titan models in that it used liquid oxygen and RP-1 as propellants; all subsequent versions used storable propellants instead.

<span class="mw-page-title-main">Cape Canaveral Space Force Station</span> Military rocket launch site in Florida

Cape Canaveral Space Force Station (CCSFS) is an installation of the United States Space Force's Space Launch Delta 45, located on Cape Canaveral in Brevard County, Florida.

<span class="mw-page-title-main">Delta IV</span> Active expendable launch system in the Delta rocket family

Delta IV was a group of five expendable launch systems in the Delta rocket family introduced in the early 2000s. Originally designed by Boeing's Defense, Space and Security division for the Evolved Expendable Launch Vehicle (EELV) program, the Delta IV became a United Launch Alliance (ULA) product in 2006. The Delta IV was primarily a launch vehicle for United States Air Force (USAF) military payloads, but was also used to launch a number of United States government non-military payloads and a single commercial satellite.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Launch vehicle</span> Rocket used to carry a spacecraft into space

A launch vehicle is typically a rocket-powered vehicle designed to carry a payload from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling. Launch vehicles are engineered with advanced aerodynamics and technologies, which contribute to high operating costs.

<span class="mw-page-title-main">Transporter erector launcher</span> Self-propelled heavy missile systems

A transporter erector launcher (TEL) is a missile vehicle with an integrated tractor unit that can transport, elevate to a firing position and launch one or more rockets or missiles.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39</span> Historic Apollo Moonport

Launch Complex 39 (LC-39) is a rocket launch site at the John F. Kennedy Space Center on Merritt Island in Florida, United States. The site and its collection of facilities were originally built as the Apollo program's "Moonport" and later modified for the Space Shuttle program.

<span class="mw-page-title-main">Mobile launcher platform</span> Structure used to support large rockets

A mobile launcher platform (MLP), also known as mobile launch platform, is a structure used to support a large multistage space vehicle which is assembled (stacked) vertically in an integration facility and then transported by a crawler-transporter (CT) to a launch pad. This becomes the support structure for launch.

<span class="mw-page-title-main">Satish Dhawan Space Centre</span> Spaceport in Andhra Pradesh, India

Satish Dhawan Space Centre – SDSC, is the primary spaceport of the Indian Space Research Organisation (ISRO), located in Sriharikota, Andhra Pradesh.

<span class="mw-page-title-main">Cape Canaveral Space Launch Complex 41</span> American space launch site at Cape Canaveral Space Force Station in Florida, USA

Space Launch Complex 41 (SLC-41), previously Launch Complex 41 (LC-41), is an active launch site at Cape Canaveral Space Force Station. As of 2020, the site is used by United Launch Alliance (ULA) for Atlas V launches. Previously, it had been used by the USAF for Titan III and Titan IV launches.

<span class="mw-page-title-main">Cape Canaveral Space Launch Complex 40</span> Rocket launch site in Florida, USA

Space Launch Complex 40 (SLC-40), sometimes pronounced Slick Forty and previously Launch Complex 40 (LC-40) is a launch pad for rockets located at the north end of Cape Canaveral Space Force Station, Florida.

<span class="mw-page-title-main">Missile launch facility</span> Underground structure for the storage and launching of intercontinental ballistic missiles

A missile launch facility, also known as an underground missile silo, launch facility (LF), or nuclear silo, is a vertical cylindrical structure constructed underground, for the storage and launching of intercontinental ballistic missiles (ICBMs), intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs). Similar facilities can be used for anti-ballistic missiles (ABMs).

<span class="mw-page-title-main">SpaceX facilities</span> Launch facilities used by SpaceX

As of 2023, SpaceX operates four launch facilities: Cape Canaveral Space Launch Complex 40 (SLC-40), Vandenberg Space Force Base Space Launch Complex 4E (SLC-4E), Kennedy Space Center Launch Complex 39A (LC-39A), and Brownsville South Texas Launch Site (Starbase). Space Launch Complex 40 was damaged in the AMOS-6 accident in September 2016 and repair work was completed by December 2017. SpaceX believes that they can optimize their launch operations, and reduce launch costs, by dividing their launch missions amongst these four launch facilities: LC-39A for NASA launches, SLC-40 for United States Space Force national security launches, SLC-4E for polar launches, and South Texas Launch Site for commercial launches.

<span class="mw-page-title-main">Exploration Ground Systems</span> NASA program for launch vehicle support

NASA's Exploration Ground Systems (EGS) Program is one of three programs based at NASA's Kennedy Space Center in Florida. EGS was established to develop and operate the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport and launch. EGS is preparing the infrastructure to support NASA's Space Launch System (SLS) rocket and its payloads, such as the Orion spacecraft for Artemis I. Artemis I is the first to launch in a series of increasingly complex missions that will enable human exploration to the Moon and Mars.

<span class="mw-page-title-main">Outline of rocketry</span> Overview of and topical guide to rocketry

The following outline is provided as an overview of and topical guide to rocketry:

References

  1. Wragg, David W. (1973). A Dictionary of Aviation (first ed.). Osprey. p. 175. ISBN   9780850451634.
  2. "LAUNCH COMPLEX 39, PADS A AND B". NASA KSC. 1992. Archived from the original on 2008-09-21.
  3. "Cpsb Launchpad". Viswanath. 2023. Archived from the original on 2023-06-16. Retrieved 2023-06-16.