DNA repair-deficiency disorder

Last updated
DNA repair-deficiency disorder
Specialty Endocrinology   OOjs UI icon edit-ltr-progressive.svg

A DNA repair-deficiency disorder is a medical condition due to reduced functionality of DNA repair.

Contents

DNA repair defects can cause an accelerated aging disease or an increased risk of cancer, or sometimes both.

DNA repair defects and accelerated aging

DNA repair defects are seen in nearly all of the diseases described as accelerated aging disease , in which various tissues, organs or systems of the human body age prematurely. Because the accelerated aging diseases display different aspects of aging, but never every aspect, they are often called segmental progerias by biogerontologists.

Human disorders with accelerated aging

Examples

Some examples of DNA repair defects causing progeroid syndromes in humans or mice are shown in Table 1.

Table 1. DNA repair proteins that, when deficient, cause features of accelerated aging (segmental progeria).
ProteinPathwayDescription
ATR Nucleotide excision repair [1] deletion of ATR in adult mice leads to a number of disorders including hair loss and graying, kyphosis, osteoporosis, premature involution of the thymus, fibrosis of the heart and kidney and decreased spermatogenesis [2]
DNA-PKcs Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; [3] [4] higher level of DNA damage persistence [5]
ERCC1 Nucleotide excision repair, Interstrand cross link repair [6] deficient transcription coupled NER with time-dependent accumulation of transcription-blocking damages; [7] mouse life span reduced from 2.5 years to 5 months; [8] ) Ercc1−/− mice are leukopenic and thrombocytopenic, and there is extensive adipose transformation of the bone marrow, hallmark features of normal aging in mice [6]
ERCC2 (XPD) Nucleotide excision repair (also transcription as part of TFIIH)some mutations in ERCC2 cause Cockayne syndrome in which patients have segmental progeria with reduced stature, intellectual disability, cachexia (loss of subcutaneous fat tissue), sensorineural deafness, retinal degeneration, and calcification of the central nervous system; other mutations in ERCC2 cause trichothiodystrophy in which patients have segmental progeria with brittle hair, short stature, progressive cognitive impairment and abnormal face shape; still other mutations in ERCC2 cause xeroderma pigmentosum (without a progeroid syndrome) and with extreme sun-mediated skin cancer predisposition [9]
ERCC4 (XPF) Nucleotide excision repair, Interstrand cross link repair, Single-strand annealing, Microhomology-mediated end joining [6] mutations in ERCC4 cause symptoms of accelerated aging that affect the neurologic, hepatobiliary, musculoskeletal, and hematopoietic systems, and cause an old, wizened appearance, loss of subcutaneous fat, liver dysfunction, vision and hearing loss, chronic kidney disease, muscle wasting, osteopenia, kyphosis and cerebral atrophy [6]
ERCC5 (XPG) Nucleotide excision repair, [10] Homologous recombinational repair, [11] Base excision repair [12] [13] mice with deficient ERCC5 show loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months
ERCC6 (Cockayne syndrome B or CS-B) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair]premature aging features with shorter life span and photosensitivity, [14] deficient transcription coupled NER with accumulation of unrepaired DNA damages, [15] also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines [15]
ERCC8 (Cockayne syndrome A or CS-A) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair]premature aging features with shorter life span and photosensitivity, [14] deficient transcription coupled NER with accumulation of unrepaired DNA damages, [15] also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines [15]
GTF2H5 (TTDA) Nucleotide excision repair deficiency causes trichothiodystrophy (TTD) a premature-ageing and neuroectodermal disease; humans with GTF2H5 mutations have a partially inactivated protein [16] with retarded repair of 6-4-photoproducts [17]
Ku70 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; [18] persistent foci of DNA double-strand break repair proteins [19]
Ku80 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; [20] defective repair of spontaneous DNA damage [18]
Lamin A Non-homologous end joining, Homologous recombination increased DNA damage and chromosome aberrations; progeria; aspects of premature aging; altered expression of numerous DNA repair factors [21]
NRMT1 Nucleotide excision repair [22] mutation in NRMT1 causes decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration [23]
RECQL4 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining [24] mutations in RECQL4 cause Rothmund-Thomson syndrome, with alopecia, sparse eyebrows and lashes, cataracts and osteoporosis [24]
SIRT6 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining [25] SIRT6-deficient mice develop profound lymphopenia, loss of subcutaneous fat and lordokyphosis, and these defects overlap with aging-associated degenerative processes [26]
SIRT7 Non-homologous end joining mice defective in SIRT7 show phenotypic and molecular signs of accelerated aging such as premature pronounced curvature of the spine, reduced life span, and reduced non-homologous end joining [27]
Werner syndrome helicase Homologous recombination, [28] [29] Non-homologous end joining, [30] Base excision repair, [31] [32] Replication arrest recovery [33] shorter lifespan, earlier onset of aging related pathologies, genome instability [34] [35]
ZMPSTE24 Homologous recombination lack of Zmpste24 prevents lamin A formation and causes progeroid phenotypes in mice and humans, increased DNA damage and chromosome aberrations, sensitivity to DNA-damaging agents and deficiency in homologous recombination [36]

DNA repair defects distinguished from "accelerated aging"

Most of the DNA repair deficiency diseases show varying degrees of "accelerated aging" or cancer (often some of both). [37] But elimination of any gene essential for base excision repair kills the embryo—it is too lethal to display symptoms (much less symptoms of cancer or "accelerated aging"). [38] Rothmund-Thomson syndrome and xeroderma pigmentosum display symptoms dominated by vulnerability to cancer, whereas progeria and Werner syndrome show the most features of "accelerated aging". Hereditary nonpolyposis colorectal cancer (HNPCC) is very often caused by a defective MSH2 gene leading to defective mismatch repair, but displays no symptoms of "accelerated aging". [39] On the other hand, Cockayne Syndrome and trichothiodystrophy show mainly features of accelerated aging, but apparently without an increased risk of cancer [40] Some DNA repair defects manifest as neurodegeneration rather than as cancer or "accelerated aging". [41] (Also see the "DNA damage theory of aging" for a discussion of the evidence that DNA damage is the primary underlying cause of aging.)

Debate concerning "accelerated aging"

Some biogerontologists question that such a thing as "accelerated aging" actually exists, at least partly on the grounds that all of the so-called accelerated aging diseases are segmental progerias. Many disease conditions such as diabetes, high blood pressure, etc., are associated with increased mortality. Without reliable biomarkers of aging it is hard to support the claim that a disease condition represents more than accelerated mortality. [42]

Against this position other biogerontologists argue that premature aging phenotypes are identifiable symptoms associated with mechanisms of molecular damage. [37] The fact that these phenotypes are widely recognized justifies classification of the relevant diseases as "accelerated aging". [43] Such conditions, it is argued, are readily distinguishable from genetic diseases associated with increased mortality, but not associated with an aging phenotype, such as cystic fibrosis and sickle cell anemia. It is further argued that segmental aging phenotype is a natural part of aging insofar as genetic variation leads to some people being more disposed than others to aging-associated diseases such as cancer and Alzheimer's disease. [44]

DNA repair defects and increased cancer risk

Individuals with an inherited impairment in DNA repair capability are often at increased risk of cancer. [45] When a mutation is present in a DNA repair gene, the repair gene will either not be expressed or be expressed in an altered form. Then the repair function will likely be deficient, and, as a consequence, damages will tend to accumulate. Such DNA damages can cause errors during DNA synthesis leading to mutations, some of which may give rise to cancer. Germ-line DNA repair mutations that increase the risk of cancer are listed in the Table.

Inherited DNA repair gene mutations that increase cancer risk
DNA repair geneProteinRepair pathways affectedCancers with increased risk
breast cancer 1 & 2 BRCA1 BRCA2 HRR of double strand breaks and daughter strand gaps [46] breast, ovarian [47]
ataxia telangiectasia mutated ATM Different mutations in ATM reduce HRR, SSA or NHEJ [48] leukemia, lymphoma, breast [48] [49]
Nijmegen breakage syndrome NBS (NBN) NHEJ [50] lymphoid cancers [50]
MRE11A MRE11 HRR and NHEJ [51] breast [52]
Bloom syndrome BLM (helicase)HRR [53] leukemia, lymphoma, colon, breast, skin, lung, auditory canal, tongue, esophagus, stomach, tonsil, larynx, uterus [54]
WRN WRNHRR, NHEJ, long patch BER [55] soft tissue sarcoma, colorectal, skin, thyroid, pancreas [56]
RECQL4 RECQ4Helicase likely active in HRR [57] basal cell carcinoma, squamous cell carcinoma, intraepidermal carcinoma [58]
Fanconi anemia genes FANCA, B, C, D1, D2, E, F, G, I, J, L, M, NFANCA etc.HRR and TLS [59] leukemia, liver tumors, solid tumors many areas [60]
XPC, XPE (DDB2)XPC, XPE Global genomic NER, repairs damage in both transcribed and untranscribed DNA [61] [62] skin cancer (melanoma and non-melanoma) [61] [62]
XPA, XPB, XPD, XPF, XPG XPA XPB XPD XPF XPG Transcription coupled NER repairs the transcribed strands of transcriptionally active genes [63] skin cancer (melanoma and non-melanoma) [63]
XPV (also called polymerase H)XPV (POLH) Translesion synthesis (TLS) [64] skin cancers (basal cell, squamous cell, melanoma) [64]
mutS (E. coli) homolog 2, mutS (E. coli) homolog 6, mutL (E. coli) homolog 1,

postmeiotic segregation increased 2 (S. cerevisiae)

MSH2 MSH6 MLH1 PMS2 MMR [65] colorectal, endometrial [65]
mutY homolog (E. coli) MUTYH BER of A paired with 8-oxo-dG [66] colon [66]
TP53 P53Direct role in HRR, BER, NER and acts in DNA damage response [67] for those pathways and for NHEJ and MMR [68] sarcomas, breast cancers, brain tumors, and adrenocortical carcinomas [69]
NTHL1 NTHL1BER for Tg, FapyG, 5-hC, 5-hU in dsDNA [70] Colon cancer, endometrial cancer, duodenal cancer, basal-cell carcinoma [71]

See also

Related Research Articles

<span class="mw-page-title-main">Progeria</span> Genetic disorder that causes early aging

Progeria is a specific type of progeroid syndrome, also known as Hutchinson–Gilford syndrome or the Benjamin Button disease. A single gene mutation is responsible for progeria. The gene, known as lamin A (LMNA), makes a protein necessary for holding the nucleus of the cell together. When this gene gets mutated, an abnormal form of lamin A protein called progerin is produced. Progeroid syndromes are a group of diseases that causes individuals to age faster than usual, leading to them appearing older than they actually are. Patients born with progeria typically live to an age of mid-teens to early twenties.

<span class="mw-page-title-main">Werner syndrome</span> Medical condition

Werner syndrome (WS) or Werner's syndrome, also known as "adult progeria", is a rare, autosomal recessive disorder which is characterized by the appearance of premature aging.

RecQ helicase is a family of helicase enzymes initially found in Escherichia coli that has been shown to be important in genome maintenance. They function through catalyzing the reaction ATP + H2O → ADP + P and thus driving the unwinding of paired DNA and translocating in the 3' to 5' direction. These enzymes can also drive the reaction NTP + H2O → NDP + P to drive the unwinding of either DNA or RNA.

<span class="mw-page-title-main">Xeroderma pigmentosum</span> Medical condition

Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in sun-exposed areas, dry skin and changes in skin pigmentation. Nervous system problems, such as hearing loss, poor coordination, loss of intellectual function and seizures, may also occur. Complications include a high risk of skin cancer, with about half having skin cancer by age 10 without preventative efforts, and cataracts. There may be a higher risk of other cancers such as brain cancers.

<span class="mw-page-title-main">Nucleotide excision repair</span> DNA repair mechanism

Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals, radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.

<span class="mw-page-title-main">XPB</span> Mammalian protein found in Homo sapiens

XPB is an ATP-dependent DNA helicase in humans that is a part of the TFIIH transcription factor complex.

<span class="mw-page-title-main">ERCC2</span> Mammalian protein found in humans

ERCC2, or XPD is a protein involved in transcription-coupled nucleotide excision repair.

<span class="mw-page-title-main">Prelamin-A/C</span> Filament protein

Prelamin-A/C, or lamin A/C is a protein that in humans is encoded by the LMNA gene. Lamin A/C belongs to the lamin family of proteins.

<span class="mw-page-title-main">XPC (gene)</span> Protein-coding gene in the species Homo sapiens

Xeroderma pigmentosum, complementation group C, also known as XPC, is a protein which in humans is encoded by the XPC gene. XPC is involved in the recognition of bulky DNA adducts in nucleotide excision repair. It is located on chromosome 3.

<span class="mw-page-title-main">ERCC6</span> Gene of the species Homo sapiens

DNA excision repair protein ERCC-6 is a protein that in humans is encoded by the ERCC6 gene. The ERCC6 gene is located on the long arm of chromosome 10 at position 11.23.

<span class="mw-page-title-main">ERCC5</span> Protein-coding gene in the species Homo sapiens

DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.

<span class="mw-page-title-main">ERCC4</span> Protein-coding gene in the species Homo sapiens

ERCC4 is a protein designated as DNA repair endonuclease XPF that in humans is encoded by the ERCC4 gene. Together with ERCC1, ERCC4 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

<span class="mw-page-title-main">ERCC8 (gene)</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-8 is a protein that in humans is encoded by the ERCC8 gene.

<span class="mw-page-title-main">GTF2H2</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIH subunit 2 is a protein that in humans is encoded by the GTF2H2 gene.

<span class="mw-page-title-main">FANCL</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the FANCL gene.

<span class="mw-page-title-main">GTF2H5</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIH subunit 5 is a protein that in humans is encoded by the GTF2H5 gene.

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly or directly.

Progeroid syndromes (PS) are a group of rare genetic disorders that mimic physiological aging, making affected individuals appear to be older than they are. The term progeroid syndrome does not necessarily imply progeria, which is a specific type of progeroid syndrome.

<span class="mw-page-title-main">Hereditary cancer syndrome</span> Inherited genetic condition that predisposes a person to cancer

A hereditary cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.

Jan Vijg is the Lola and Saul Kramer Chairperson in Molecular Genetics at the Department of Genetics at the Albert Einstein College of Medicine, New York City, United States. Prior to this appointment, he was a professor at the Buck Institute for Research on Aging.

References

  1. Park JM, Kang TH (2016). "Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation". Int J Mol Sci. 17 (11): 1840. doi: 10.3390/ijms17111840 . PMC   5133840 . PMID   27827925.
  2. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ (2007). "Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss". Cell Stem Cell. 1 (1): 113–26. doi:10.1016/j.stem.2007.03.002. PMC   2920603 . PMID   18371340.
  3. Espejel S, Martín M, Klatt P, Martín-Caballero J, Flores JM, Blasco MA (2004). "Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice". EMBO Rep. 5 (5): 503–9. doi:10.1038/sj.embor.7400127. PMC   1299048 . PMID   15105825.
  4. Reiling E, Dollé ME, Youssef SA, Lee M, Nagarajah B, Roodbergen M, de With P, de Bruin A, Hoeijmakers JH, Vijg J, van Steeg H, Hasty P (2014). "The progeroid phenotype of Ku80 deficiency is dominant over DNA-PKCS deficiency". PLOS ONE. 9 (4): e93568. Bibcode:2014PLoSO...993568R. doi: 10.1371/journal.pone.0093568 . PMC   3989187 . PMID   24740260.
  5. Peddi P, Loftin CW, Dickey JS, Hair JM, Burns KJ, Aziz K, Francisco DC, Panayiotidis MI, Sedelnikova OA, Bonner WM, Winters TA, Georgakilas AG (2010). "DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells". Free Radic. Biol. Med. 48 (10): 1435–43. doi:10.1016/j.freeradbiomed.2010.02.033. PMC   2901171 . PMID   20193758.
  6. 1 2 3 4 Gregg SQ, Robinson AR, Niedernhofer LJ (2011). "Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease". DNA Repair (Amst.). 10 (7): 781–91. doi:10.1016/j.dnarep.2011.04.026. PMC   3139823 . PMID   21612988.
  7. Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, Wu H, Roks AJ, Botter SM, van der Eerden BC, Youssef SA, Kuiper RV, Nagarajah B, van Oostrom CT, Brandt RM, Barnhoorn S, Imholz S, Pennings JL, de Bruin A, Gyenis Á, Pothof J, Vijg J, van Steeg H, Hoeijmakers JH (2016). "Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice". Nature. 537 (7620): 427–431. Bibcode:2016Natur.537..427V. doi:10.1038/nature19329. PMC   5161687 . PMID   27556946.
  8. Dollé ME, Kuiper RV, Roodbergen M, Robinson J, de Vlugt S, Wijnhoven SW, Beems RB, de la Fonteyne L, de With P, van der Pluijm I, Niedernhofer LJ, Hasty P, Vijg J, Hoeijmakers JH, van Steeg H (2011). "Broad segmental progeroid changes in short-lived Ercc1(-/Δ7) mice". Pathobiol Aging Age Relat Dis. 1: 7219. doi:10.3402/pba.v1i0.7219. PMC   3417667 . PMID   22953029.
  9. Fuss JO, Tainer JA (2011). "XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase". DNA Repair (Amst.). 10 (7): 697–713. doi:10.1016/j.dnarep.2011.04.028. PMC   3234290 . PMID   21571596.
  10. Tian M, Jones DA, Smith M, Shinkura R, Alt FW (2004). "Deficiency in the nuclease activity of xeroderma pigmentosum G in mice leads to hypersensitivity to UV irradiation". Mol. Cell. Biol. 24 (6): 2237–42. doi:10.1128/MCB.24.6.2237-2242.2004. PMC   355871 . PMID   14993263.
  11. Trego KS, Groesser T, Davalos AR, Parplys AC, Zhao W, Nelson MR, Hlaing A, Shih B, Rydberg B, Pluth JM, Tsai MS, Hoeijmakers JH, Sung P, Wiese C, Campisi J, Cooper PK (2016). "Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability". Mol. Cell. 61 (4): 535–46. doi:10.1016/j.molcel.2015.12.026. PMC   4761302 . PMID   26833090.
  12. Bessho T (1999). "Nucleotide excision repair 3' endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase". Nucleic Acids Res. 27 (4): 979–83. doi:10.1093/nar/27.4.979. PMC   148276 . PMID   9927729.
  13. Weinfeld M, Xing JZ, Lee J, Leadon SA, Cooper PK, Le XC (2001). "Factors influencing the removal of thymine glycol from DNA in γ-irradiated human cells". Factors influencing the removal of thymine glycol from DNA in gamma-irradiated human cells. pp. 139–49. doi:10.1016/S0079-6603(01)68096-6. ISBN   9780125400688. PMID   11554293.{{cite book}}: |journal= ignored (help)
  14. 1 2 Iyama T, Wilson DM (2016). "Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome". J. Mol. Biol. 428 (1): 62–78. doi:10.1016/j.jmb.2015.11.020. PMC   4738086 . PMID   26616585.
  15. 1 2 3 4 D'Errico M, Pascucci B, Iorio E, Van Houten B, Dogliotti E (2013). "The role of CSA and CSB protein in the oxidative stress response". Mech. Ageing Dev. 134 (5–6): 261–9. doi:10.1016/j.mad.2013.03.006. PMID   23562424. S2CID   25146054.
  16. Theil AF, Nonnekens J, Steurer B, Mari PO, de Wit J, Lemaitre C, Marteijn JA, Raams A, Maas A, Vermeij M, Essers J, Hoeijmakers JH, Giglia-Mari G, Vermeulen W (2013). "Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality". PLOS Genet. 9 (4): e1003431. doi: 10.1371/journal.pgen.1003431 . PMC   3630102 . PMID   23637614.
  17. Theil AF, Nonnekens J, Wijgers N, Vermeulen W, Giglia-Mari G (2011). "Slowly progressing nucleotide excision repair in trichothiodystrophy group A patient fibroblasts". Mol. Cell. Biol. 31 (17): 3630–8. doi:10.1128/MCB.01462-10. PMC   3165551 . PMID   21730288.
  18. 1 2 Holcomb VB, Vogel H, Hasty P (2007). "Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs". Mech. Ageing Dev. 128 (11–12): 601–8. doi:10.1016/j.mad.2007.08.006. PMC   2692937 . PMID   17928034.
  19. Ahmed EA, Vélaz E, Rosemann M, Gilbertz KP, Scherthan H (2017). "DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts". Chromosoma. 126 (2): 287–298. doi:10.1007/s00412-016-0590-9. PMC   5371645 . PMID   27136939.
  20. Li H, Vogel H, Holcomb VB, Gu Y, Hasty P (2007). "Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer". Mol. Cell. Biol. 27 (23): 8205–14. doi:10.1128/MCB.00785-07. PMC   2169178 . PMID   17875923.
  21. Gonzalo S, Kreienkamp R (2016). "Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina". The Nuclear Envelope. Methods in Molecular Biology. Vol. 1411. pp. 419–37. doi:10.1007/978-1-4939-3530-7_26. ISBN   978-1-4939-3528-4. PMC   5044759 . PMID   27147057.
  22. Cai Q, Fu L, Wang Z, Gan N, Dai X, Wang Y (2014). "α-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair". J. Biol. Chem. 289 (23): 16046–56. doi: 10.1074/jbc.M114.558510 . PMC   4047379 . PMID   24753253.
  23. Bonsignore LA, Tooley JG, Van Hoose PM, Wang E, Cheng A, Cole MP, Schaner Tooley CE (2015). "NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging". Mech. Ageing Dev. 146–148: 42–52. doi:10.1016/j.mad.2015.03.012. PMC   4457563 . PMID   25843235.
  24. 1 2 Lu L, Jin W, Wang LL (2017). "Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders". Ageing Res. Rev. 33: 30–35. doi:10.1016/j.arr.2016.06.002. PMID   27287744. S2CID   28321025.
  25. Chalkiadaki A, Guarente L (2015). "The multifaceted functions of sirtuins in cancer". Nat. Rev. Cancer. 15 (10): 608–24. doi:10.1038/nrc3985. PMID   26383140. S2CID   3195442.
  26. Mostoslavsky, R; Chua, KF; Lombard, DB; Pang, WW; Fischer, MR; Gellon, L; Liu, P; Mostoslavsky, G; Franco, S; Murphy, MM; Mills, KD; Patel, P; Hsu, JT; Hong, AL; Ford, E; Cheng, HL; Kennedy, C; Nunez, N; Bronson, R; Frendewey, D; Auerbach, W; Valenzuela, D; Karow, M; Hottiger, MO; Hursting, S; Barrett, JC; Guarente, L; Mulligan, R; Demple, B; Yancopoulos, GD; Alt, FW (Jan 2006). "Genomic instability and aging-like phenotype in the absence of mammalian SIRT6". Cell. 124 (2): 315–29. doi: 10.1016/j.cell.2005.11.044 . PMID   16439206. S2CID   18517518.
  27. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016). "SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair". EMBO J. 35 (14): 1488–503. doi:10.15252/embj.201593499. PMC   4884211 . PMID   27225932.
  28. Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ (2002). "Homologous recombination resolution defect in werner syndrome". Mol. Cell. Biol. 22 (20): 6971–8. doi:10.1128/mcb.22.20.6971-6978.2002. PMC   139822 . PMID   12242278.
  29. Sturzenegger A, Burdova K, Kanagaraj R, Levikova M, Pinto C, Cejka P, Janscak P (2014). "DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells". J. Biol. Chem. 289 (39): 27314–26. doi: 10.1074/jbc.M114.578823 . PMC   4175362 . PMID   25122754.
  30. Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA (2016). "WRN regulates pathway choice between classical and alternative non-homologous end joining". Nat Commun. 7: 13785. Bibcode:2016NatCo...713785S. doi:10.1038/ncomms13785. PMC   5150655 . PMID   27922005.
  31. Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, de Souza Pinto N, Ramos W, Greenberg MM, Hazra TK, Mitra S, Bohr VA (2007). "The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1". J. Biol. Chem. 282 (36): 26591–602. doi: 10.1074/jbc.M703343200 . PMID   17611195.
  32. Kanagaraj R, Parasuraman P, Mihaljevic B, van Loon B, Burdova K, König C, Furrer A, Bohr VA, Hübscher U, Janscak P (2012). "Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage". Nucleic Acids Res. 40 (17): 8449–59. doi:10.1093/nar/gks648. PMC   3458577 . PMID   22753033.
  33. Pichierri P, Ammazzalorso F, Bignami M, Franchitto A (2011). "The Werner syndrome protein: linking the replication checkpoint response to genome stability". Aging. 3 (3): 311–8. doi:10.18632/aging.100293. PMC   3091524 . PMID   21389352.
  34. Rossi ML, Ghosh AK, Bohr VA (2010). "Roles of Werner syndrome protein in protection of genome integrity". DNA Repair (Amst.). 9 (3): 331–44. doi:10.1016/j.dnarep.2009.12.011. PMC   2827637 . PMID   20075015.
  35. Veith S, Mangerich A (2015). "RecQ helicases and PARP1 team up in maintaining genome integrity". Ageing Res. Rev. 23 (Pt A): 12–28. doi:10.1016/j.arr.2014.12.006. PMID   25555679. S2CID   29498397.
  36. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadiñanos J, López-Otín C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005). "Genomic instability in laminopathy-based premature aging". Nat. Med. 11 (7): 780–5. doi:10.1038/nm1266. PMID   15980864. S2CID   11798376.
  37. 1 2 Best, BP (2009). "Nuclear DNA damage as a direct cause of aging" (PDF). Rejuvenation Research. 12 (3): 199–208. CiteSeerX   10.1.1.318.738 . doi:10.1089/rej.2009.0847. PMID   19594328. Archived from the original (PDF) on 2017-11-15. Retrieved 2009-09-29.
  38. Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J (February 2003). "Aging and genome maintenance: lessons from the mouse?". Science. 299 (5611): 1355–9. doi:10.1126/science.1079161. PMID   12610296. S2CID   840477.
  39. Mazurek A, Berardini M, Fishel R (March 2002). "Activation of human MutS homologs by 8-oxo-guanine DNA damage". J. Biol. Chem. 277 (10): 8260–6. doi: 10.1074/jbc.M111269200 . PMID   11756455.
  40. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009 Oct 8;361(15):1475-85.
  41. Rass U, Ahel I, West SC (September 2007). "Defective DNA repair and neurodegenerative disease". Cell. 130 (6): 991–1004. doi: 10.1016/j.cell.2007.08.043 . PMID   17889645. S2CID   17615809.
  42. Miller RA (April 2004). "'Accelerated aging': a primrose path to insight?" (PDF). Aging Cell. 3 (2): 47–51. doi: 10.1111/j.1474-9728.2004.00081.x . hdl:2027.42/73065. PMID   15038817. S2CID   41182844.
  43. Hasty P, Vijg J (April 2004). "Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity". Aging Cell. 3 (2): 55–65. doi: 10.1111/j.1474-9728.2004.00082.x . PMID   15038819. S2CID   26832020.
  44. Hasty P, Vijg J (April 2004). "Rebuttal to Miller: 'Accelerated aging': a primrose path to insight?'". Aging Cell. 3 (2): 67–9. doi:10.1111/j.1474-9728.2004.00087.x. PMID   15038820. S2CID   26925937.
  45. Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002 Jun;511(2):145-78. Review.
  46. Nagaraju G, Scully R (2007). "Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks". DNA Repair (Amst.). 6 (7): 1018–31. doi:10.1016/j.dnarep.2007.02.020. PMC   2989184 . PMID   17379580.
  47. Lancaster JM, Powell CB, Chen LM, Richardson DL (2015). "Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions". Gynecol. Oncol. 136 (1): 3–7. doi:10.1016/j.ygyno.2014.09.009. PMID   25238946.
  48. 1 2 Keimling M, Volcic M, Csernok A, Wieland B, Dörk T, Wiesmüller L (2011). "Functional characterization connects individual patient mutations in ataxia telangiectasia mutated (ATM) with dysfunction of specific DNA double-strand break-repair signaling pathways". FASEB J. 25 (11): 3849–60. doi:10.1096/fj.11-185546. PMID   21778326. S2CID   24698475.
  49. Thompson LH, Schild D (2002). "Recombinational DNA repair and human disease". Mutat. Res. 509 (1–2): 49–78. doi:10.1016/s0027-5107(02)00224-5. PMID   12427531.
  50. 1 2 Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, Kalina MA, Digweed M (2012). "Nijmegen breakage syndrome (NBS)". Orphanet J Rare Dis. 7: 13. doi: 10.1186/1750-1172-7-13 . PMC   3314554 . PMID   22373003.
  51. Rapp A, Greulich KO (2004). "After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available". J. Cell Sci. 117 (Pt 21): 4935–45. doi: 10.1242/jcs.01355 . PMID   15367581.
  52. Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, Heikkinen T, Mistrik M, Aittomäki K, Blomqvist C, Heikkilä P, Lukas J, Nevanlinna H, Bartek J (2008). "Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene". Mol Oncol. 2 (4): 296–316. doi:10.1016/j.molonc.2008.09.007. PMC   5527773 . PMID   19383352.
  53. Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC (2008). "Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair". Proc. Natl. Acad. Sci. U.S.A. 105 (44): 16906–11. Bibcode:2008PNAS..10516906N. doi: 10.1073/pnas.0809380105 . PMC   2579351 . PMID   18971343.
  54. German J (1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". Am. J. Hum. Genet. 21 (2): 196–227. PMC   1706430 . PMID   5770175.
  55. Bohr VA (2005). "Deficient DNA repair in the human progeroid disorder, Werner syndrome". Mutat. Res. 577 (1–2): 252–9. doi:10.1016/j.mrfmmm.2005.03.021. PMID   15916783.
  56. Monnat RJ (2010). "Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology". Semin. Cancer Biol. 20 (5): 329–39. doi:10.1016/j.semcancer.2010.10.002. PMC   3040982 . PMID   20934517.
  57. Singh DK, Ahn B, Bohr VA (2009). "Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging". Biogerontology. 10 (3): 235–52. doi:10.1007/s10522-008-9205-z. PMC   2713741 . PMID   19083132.
  58. Anbari KK, Ierardi-Curto LA, Silber JS, Asada N, Spinner N, Zackai EH, Belasco J, Morrissette JD, Dormans JP (2000). "Two primary osteosarcomas in a patient with Rothmund-Thomson syndrome". Clin. Orthop. Relat. Res. 378 (378): 213–23. doi:10.1097/00003086-200009000-00032. PMID   10986997. S2CID   36781050.
  59. Thompson LH, Hinz JM (2009). "Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights". Mutat. Res. 668 (1–2): 54–72. doi:10.1016/j.mrfmmm.2009.02.003. PMC   2714807 . PMID   19622404.
  60. Alter BP (2003). "Cancer in Fanconi anemia, 1927-2001". Cancer. 97 (2): 425–40. doi: 10.1002/cncr.11046 . PMID   12518367. S2CID   38251423.
  61. 1 2 Lehmann AR, McGibbon D, Stefanini M (2011). "Xeroderma pigmentosum". Orphanet J Rare Dis. 6: 70. doi: 10.1186/1750-1172-6-70 . PMC   3221642 . PMID   22044607.
  62. 1 2 Oh KS, Imoto K, Emmert S, Tamura D, DiGiovanna JJ, Kraemer KH (2011). "Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells". Photochem. Photobiol. 87 (3): 729–33. doi:10.1111/j.1751-1097.2011.00909.x. PMC   3082610 . PMID   21388382.
  63. 1 2 Menck CF, Munford V (2014). "DNA repair diseases: What do they tell us about cancer and aging?". Genet. Mol. Biol. 37 (1 Suppl): 220–33. doi:10.1590/s1415-47572014000200008. PMC   3983582 . PMID   24764756.
  64. 1 2 Opletalova K, Bourillon A, Yang W, Pouvelle C, Armier J, Despras E, Ludovic M, Mateus C, Robert C, Kannouche P, Soufir N, Sarasin A (2014). "Correlation of phenotype/genotype in a cohort of 23 xeroderma pigmentosum-variant patients reveals 12 new disease-causing POLH mutations". Hum. Mutat. 35 (1): 117–28. doi: 10.1002/humu.22462 . PMID   24130121. S2CID   2854418.
  65. 1 2 Meyer LA, Broaddus RR, Lu KH (2009). "Endometrial cancer and Lynch syndrome: clinical and pathologic considerations". Cancer Control. 16 (1): 14–22. doi:10.1177/107327480901600103. PMC   3693757 . PMID   19078925.
  66. 1 2 Markkanen E, Dorn J, Hübscher U (2013). "MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA". Front Genet. 4: 18. doi: 10.3389/fgene.2013.00018 . PMC   3584444 . PMID   23450852.
  67. Kastan MB (2008). "DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture". Mol. Cancer Res. 6 (4): 517–24. doi: 10.1158/1541-7786.MCR-08-0020 . PMID   18403632.
  68. Viktorsson K, De Petris L, Lewensohn R (2005). "The role of p53 in treatment responses of lung cancer". Biochem. Biophys. Res. Commun. 331 (3): 868–80. doi:10.1016/j.bbrc.2005.03.192. PMID   15865943.
  69. Testa JR, Malkin D, Schiffman JD (2013). "Connecting molecular pathways to hereditary cancer risk syndromes". Am Soc Clin Oncol Educ Book. 33: 81–90. doi:10.1200/EdBook_AM.2013.33.81. PMC   5889618 . PMID   23714463.
  70. Krokan HE, Bjørås M (2013). "Base excision repair". Cold Spring Harb Perspect Biol. 5 (4): a012583. doi:10.1101/cshperspect.a012583. PMC   3683898 . PMID   23545420.
  71. Kuiper RP, Hoogerbrugge N (2015). "NTHL1 defines novel cancer syndrome". Oncotarget. 6 (33): 34069–70. doi:10.18632/oncotarget.5864. PMC   4741436 . PMID   26431160.