Electric light

Last updated

Electric light
Lampadas.jpg
TypeDepends on type of light
Working principle Luminescence by electricity
Invented1809;215 years ago (1809) by Humphry Davy (arc lamp)
First production 1879;145 years ago (1879) by Joseph Swan and Thomas Edison (first demo of incandescent bulb)
Pin configuration  Anode and cathode
Electronic symbol
Lamp symbol.svg Lamp symbol, old.svg

An electric light, lamp, or light bulb is an electrical component that produces light. It is the most common form of artificial lighting. Lamps usually have a base made of ceramic, metal, glass, or plastic, which secures the lamp in the socket of a light fixture, which is often called a "lamp" as well. The electrical connection to the socket may be made with a screw-thread base, two metal pins, two metal caps or a bayonet mount.

Contents

The three main categories of electric lights are incandescent lamps, which produce light by a filament heated white-hot by electric current, gas-discharge lamps, which produce light by means of an electric arc through a gas, such as fluorescent lamps, and LED lamps, which produce light by a flow of electrons across a band gap in a semiconductor.

The energy efficiency of electric lighting has increased radically since the first demonstration of arc lamps and the incandescent light bulb of the 19th century. Modern electric light sources come in a profusion of types and sizes adapted to many applications. Most modern electric lighting is powered by centrally generated electric power, but lighting may also be powered by mobile or standby electric generators or battery systems. Battery-powered light is often reserved for when and where stationary lights fail, often in the form of flashlights or electric lanterns, as well as in vehicles.

History

Before electric lighting became common in the early 20th century, people used candles, gas lights, oil lamps, and fires. [1] In 1799–1800, Alessandro Volta created the voltaic pile, the first electric battery. Current from these batteries could heat copper wire to incandescence. Vasily Vladimirovich Petrov developed the first persistent electric arc in 1802, and English chemist Humphry Davy gave a practical demonstration of an arc light in 1806. [2]

In 1840, Warren de la Rue enclosed a platinum coil in a vacuum tube and passed an electric current through it, thus creating one of the world's first electric light bulbs. [3] [4] [5] The design was based on the concept that the high melting point of platinum would allow it to operate at high temperatures and that the evacuated chamber would contain fewer gas molecules to react with the platinum, improving its longevity. Although it was an efficient design, the cost of the platinum made it impractical for commercial use. [6]

William Greener, an English inventor, made significant contributions to early electric lighting with his lamp in 1846 (patent specification 11076), laying the groundwork for future innovations such as Thomas Edison.

The late 1870s and 1880s were marked by intense competition and innovation, with inventors like Joseph Swan in the UK and Thomas Edison in the US independently developing functional incandescent lamps. Swan's bulbs, based on designs by William Staite, were successful, but the filaments were too thick. Edison worked to create bulbs with thinner filaments, leading to a better design. [7] The rivalry between Swan and Edison eventually led to a merger, forming the Edison and Swan Electric Light Company. By the early twentieth century these had completely replaced arc lamps. [8] [1]

While the ability of wires to illuminate when supplied with current was first discovered during the Enlightenment, it took more than a century of continuous and incremental improvement, including numerous designs, patents, and resulting intellectual property disputes, before incandescent light bulbs became commercially available in the 1920s. [9] [10] The first home to be lit by an electric light was Underhill, the home of Joseph Swan, around 1880. [11]

The turn of the century saw further improvements in bulb longevity and efficiency, notably with the introduction of the tungsten filament by William D. Coolidge, who applied for a patent in 1912. [12] This innovation became a standard for incandescent bulbs for many years.

In 1910, Georges Claude introduced the first neon light, paving the way for neon signs which would become ubiquitous in advertising. [13] [14] [15]

In 1934, Arthur Compton, a renowned physicist and GE consultant, reported to the GE lamp department on successful experiments with fluorescent lighting at General Electric Co., Ltd. in Great Britain (unrelated to General Electric in the United States). Stimulated by this report, and with all of the key elements available, a team led by George E. Inman built a prototype fluorescent lamp in 1934 at General Electric’s Nela Park (Ohio) engineering laboratory. This was not a trivial exercise; as noted by Arthur A. Bright, "A great deal of experimentation had to be done on lamp sizes and shapes, cathode construction, gas pressures of both argon and mercury vapor, colors of fluorescent powders, methods of attaching them to the inside of the tube, and other details of the lamp and its auxiliaries before the new device was ready for the public." [16]

The first practical LED arrived in 1962. [17]

U.S. transition to LED bulbs

In the United States, incandescent light bulbs including halogen bulbs stopped being sold as of August 1, 2023,[ needs update ] because they do not meet minimum lumens per watt performance metrics established by the U.S. Department of Energy. [18] [ needs update ] Compact fluorescent bulbs are also banned despite their lumens per watt performance, because of their toxic mercury that can be released into the home if broken and widespread problems with proper disposal of mercury-containing bulbs.

Types

Incandescent

Sign with instructions on the use of light bulbs This room is equipped with Edison electric light.jpg
Sign with instructions on the use of light bulbs
A tablet at St John the Baptist Church, Hagley commemorates the installation of electric light in 1934. Hagley, St John the Baptist - interior, Mason memorial.jpg
A tablet at St John the Baptist Church, Hagley commemorates the installation of electric light in 1934.

In its modern form, the incandescent light bulb consists of a coiled filament of tungsten sealed in a globular glass chamber, either a vacuum or full of an inert gas such as argon. When an electric current is connected, the tungsten is heated to 2,000 to 3,300 K (1,730 to 3,030 °C; 3,140 to 5,480 °F) and glows, emitting light that approximates a continuous spectrum.

Incandescent bulbs are highly inefficient, in that just 2–5% of the energy consumed is emitted as visible, usable light. The remaining 95% is lost as heat. [19] In warmer climates, the emitted heat must then be removed, putting additional pressure on ventilation or air conditioning systems. [20] In colder weather, the heat byproduct has some value, and has been successfully harnessed for warming in devices such as heat lamps. Incandescent bulbs are nonetheless being phased out in favor of technologies like CFLs and LED bulbs in many countries due to their low energy efficiency. The European Commission estimated in 2012 that a complete ban on incandescent bulbs would contribute 5 to 10 billion euros to the economy and save 15 billion metric tonnes of carbon dioxide emissions. [21]

Halogen

Halogen lamps are usually much smaller than standard incandescent lamps, because for successful operation a bulb temperature over 200 °C is generally necessary. For this reason, most have a bulb of fused silica (quartz) or aluminosilicate glass. This is often sealed inside an additional layer of glass. The outer glass is a safety precaution, to reduce ultraviolet emission and to contain hot glass shards should the inner envelope explode during operation. [22] Oily residue from fingerprints may cause a hot quartz envelope to shatter due to excessive heat buildup at the contamination site. [23] The risk of burns or fire is also greater with bare bulbs, leading to their prohibition in some places, unless enclosed by the luminaire.

Those designed for 12- or 24-volt operation have compact filaments, useful for good optical control. Also, they have higher efficacies (lumens per watt) and longer lives than non-halogen types. The light output remains almost constant throughout their life.

Fluorescent

Top, two compact fluorescent lamps. Bottom, two fluorescent tube lamps. A matchstick, left, is shown for scale. Leuchtstofflampen-chtaube050409.jpg
Top, two compact fluorescent lamps. Bottom, two fluorescent tube lamps. A matchstick, left, is shown for scale.

Fluorescent lamps consist of a glass tube that contains mercury vapour or argon under low pressure. Electricity flowing through the tube causes the gases to give off ultraviolet energy. The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. [24] They have much higher efficiency than incandescent lamps. For the same amount of light generated, they typically use around one-quarter to one-third the power of an incandescent. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. Fluorescent lamp fixtures are more costly than incandescent lamps, because they require a ballast to regulate the current through the lamp, but the lower energy cost typically offsets the higher initial cost. Compact fluorescent lamps are available in the same popular sizes as incandescent lamps and are used as an energy-saving alternative in homes. Because they contain mercury, many fluorescent lamps are classified as hazardous waste. The United States Environmental Protection Agency recommends that fluorescent lamps be segregated from general waste for recycling or safe disposal, and some jurisdictions require recycling of them. [25]

LED

LED lamp with E27 Edison screw base Led-lampa.jpg
LED lamp with E27 Edison screw base

The solid-state light-emitting diode (LED) has been popular as an indicator light in consumer electronics and professional audio gear since the 1970s. In the 2000s, efficacy and output have risen to the point where LEDs are now being used in lighting applications such as car headlights [26] and brake lights, [26] in flashlights [27] and bicycle lights, [28] as well as in decorative applications, such as holiday lighting. [29] Indicator LEDs are known for their extremely long life, up to 100,000 hours, but lighting LEDs are operated much less conservatively, and consequently have shorter lives. LED technology is useful for lighting designers, because of its low power consumption, low heat generation, instantaneous on/off control, and in the case of single color LEDs, continuity of color throughout the life of the diode and relatively low cost of manufacture. [29] LED lifetime depends strongly on the temperature of the diode. [30] Operating an LED lamp in conditions that increase the internal temperature can greatly shorten the lamp's life. Some lasers have been adapted as an alternative to LEDs to provide highly focused illumination. [31] [32]

Carbon arc

The 15 kW xenon short-arc lamp used in the IMAX projection system. Xenon short arc 1.jpg
The 15 kW xenon short-arc lamp used in the IMAX projection system.
A mercury arc lamp from a fluorescence microscope. Microscope MercuryArcBulb Detail.jpg
A mercury arc lamp from a fluorescence microscope.

Carbon arc lamps consist of two carbon rod electrodes in open air, supplied by a current-limiting ballast. The electric arc is struck by touching the rod tips then separating them. The ensuing arc produces a white-hot plasma between the rod tips. These lamps have higher efficacy than filament lamps, but the carbon rods are short-lived and require constant adjustment in use, as the intense heat of the arc erodes them. [33] The lamps produce significant ultraviolet output, they require ventilation when used indoors, and due to their intensity they need protection from direct sight.

Invented by Humphry Davy around 1805, the carbon arc was the first practical electric light. [34] [35] It was used commercially beginning in the 1870s for large building and street lighting until it was superseded in the early 20th century by the incandescent light. [34] Carbon arc lamps operate at high power and produce high intensity white light. They also are a point source of light. They remained in use in limited applications that required these properties, such as movie projectors, stage lighting, and searchlights, until after World War II. [33]

Discharge

A discharge lamp has a glass or silica envelope containing two metal electrodes separated by a gas. Gases used include, neon, argon, xenon, sodium, metal halides, and mercury. The core operating principle is much the same as the carbon arc lamp, but the term "arc lamp" normally refers to carbon arc lamps, with more modern types of gas discharge lamp normally called discharge lamps. With some discharge lamps, very high voltage is used to strike the arc. This requires an electrical circuit called an igniter, which is part of the electrical ballast circuitry. After the arc is struck, the internal resistance of the lamp drops to a low level, and the ballast limits the current to the operating current. Without a ballast, excess current would flow, causing rapid destruction of the lamp.

Some lamp types contain a small amount of neon, which permits striking at normal running voltage with no external ignition circuitry. Low-pressure sodium lamps operate this way. The simplest ballasts are just an inductor, and are chosen where cost is the deciding factor, such as street lighting. More advanced electronic ballasts may be designed to maintain constant light output over the life of the lamp, may drive the lamp with a square wave to maintain completely flicker-free output, and shut down in the event of certain faults.

The most efficient source of electric light is the low-pressure sodium lamp. It produces, for all practical purposes, a monochromatic orange-yellow light, which gives a similarly monochromatic perception of any illuminated scene. For this reason, it is generally reserved for outdoor public lighting applications. Low-pressure sodium lights are favoured for public lighting by astronomers, since the light pollution that they generate can be easily filtered, contrary to broadband or continuous spectra.

Characteristics

Form factor

Many lamp units, or light bulbs, are specified in standardized shape codes and socket names. Incandescent bulbs and their retrofit replacements are often specified as "A19/A60 E26/E27", a common size for those kinds of light bulbs. In this example, the "A" parameters describe the bulb size and shape within the A-series light bulb while the "E" parameters describe the Edison screw base size and thread characteristics. [36]

Comparison parameters

Common comparison parameters include: [37]

Less common parameters include color rendering index (CRI).

Life expectancy

Life expectancy for many types of lamp is defined as the number of hours of operation at which 50% of them fail, that is the median life of the lamps. Production tolerances as low as 1% can create a variance of 25% in lamp life, so in general some lamps will fail well before the rated life expectancy, and some will last much longer. For LEDs, lamp life is defined as the operation time at which 50% of lamps have experienced a 70% decrease in light output. In the 1900s the Phoebus cartel formed in an attempt to reduce the life of electric light bulbs, an example of planned obsolescence. [38] [39]

Some types of lamp are also sensitive to switching cycles. Rooms with frequent switching, such as bathrooms, can expect much shorter lamp life than what is printed on the box. Compact fluorescent lamps are particularly sensitive to switching cycles. [40]

Uses

A clear glass 60 W light bulb Gluehlampe 01 KMJ.jpg
A clear glass 60 W light bulb

The total amount of artificial light (especially from street light) is sufficient for cities to be easily visible at night from the air, and from space. External lighting grew at a rate of 3–6 percent for the later half of the 20th century and is the major source of light pollution [41] that burdens astronomers [42] and others with 80% of the world's population living in areas with night time light pollution. [43] Light pollution has been shown to have a negative effect on some wildlife. [41] [44]

Electric lamps can be used as heat sources, for example in incubators, as infrared lamps in fast food restaurants and toys such as the Kenner Easy-Bake Oven. [45]

Lamps can also be used for light therapy to deal with such issues as vitamin D deficiency, [46] skin conditions such as acne [47] [48] and dermatitis, [49] skin cancers, [50] and seasonal affective disorder. [51] [52] [53] Lamps which emit a specific frequency of blue light are also used to treat neonatal jaundice [54] with the treatment which was initially undertaken in hospitals being able to be conducted at home. [55] [56]

Electric lamps can also be used as a grow light to aid in plant growth [57] especially in indoor hydroponics and aquatic plants with recent research into the most effective types of light for plant growth. [58]

Due to their nonlinear resistance characteristics, tungsten filament lamps have long been used as fast-acting thermistors in electronic circuits. Popular uses have included:

Cultural symbolism

In Western culture, a lightbulb — in particular, the appearance of an illuminated lightbulb above a person's head — signifies sudden inspiration.

In the Middle East, a light bulb symbol has a sexual connotation. [59] [ failed verification ]

A stylized depiction of a light bulb features as the logo of the Turkish AK Party. [60] [61]

See also

Related Research Articles

<span class="mw-page-title-main">Incandescent light bulb</span> Electric light bulb with a resistively heated wire filament

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a filament that is heated until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Electric current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

<span class="mw-page-title-main">Halogen lamp</span> Incandescent lamp variety

A halogen lamp is an incandescent lamp consisting of a tungsten filament sealed in a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen, such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen-cycle chemical reaction, which redeposits evaporated tungsten on the filament, increasing its life and maintaining the clarity of the envelope. This allows the filament to operate at a higher temperature than a standard incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb, which has a lower temperature, protects the inner bulb from contamination, and makes the bulb mechanically more similar to a conventional lamp.

<span class="mw-page-title-main">Timeline of lighting technology</span>

Artificial lighting technology began to be developed tens of thousands of years ago and continues to be refined in the present day.

<span class="mw-page-title-main">Arc lamp</span> Lamp that produces light by an electric arc

An arc lamp or arc light is a lamp that produces light by an electric arc.

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficiency of an incandescent bulb may only be 16 lumens per watt.

<span class="mw-page-title-main">Lighting</span> Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

<span class="mw-page-title-main">Flashlight</span> Portable hand-held electric light

A flashlight (US) or electric torch (CE), usually shortened to torch, is a portable hand-held electric lamp. Formerly, the light source typically was a miniature incandescent light bulb, but these have been displaced by light-emitting diodes (LEDs) since the early 2000s. A typical flashlight consists of the light source mounted in a reflector, a transparent cover to protect the light source and reflector, a battery, and a switch, all enclosed in a case.

<span class="mw-page-title-main">Sodium-vapor lamp</span> Type of electric gas-discharge lamp

A sodium-vapor lamp is a gas-discharge lamp that uses sodium in an excited state to produce light at a characteristic wavelength near 589 nm.

<span class="mw-page-title-main">Daniel McFarlan Moore</span> American electrical engineer and inventor

Daniel McFarlan Moore was an American electrical engineer and inventor. He developed a novel light source, the "Moore lamp", and a business that produced them in the early 1900s. The Moore lamp was the first commercially viable light-source based on gas discharges instead of incandescence; it was the predecessor to contemporary neon lighting and fluorescent lighting. In his later career Moore developed a miniature neon lamp that was extensively used in electronic displays, as well as vacuum tubes that were used in early television systems.

<span class="mw-page-title-main">Mercury-vapor lamp</span> Light source using an electric arc through mercury vapor

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

<span class="mw-page-title-main">Compact fluorescent lamp</span> Fluorescent lamps with folded tubes, often with built-in ballast

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube that is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

<span class="mw-page-title-main">History of street lighting in the United States</span> History of street lights

The history of street lighting in the United States is closely linked to the urbanization of America. Artificial illumination has stimulated commercial activity at night, and has been tied to the country's economic development, including major innovations in transportation, particularly the growth in automobile use. In the two and a half centuries before LED lighting emerged as the new "gold standard", cities and towns across America relied on oil, coal gas, carbon arc, incandescent, and high-intensity gas discharge lamps for street lighting.

<span class="mw-page-title-main">Metal-halide lamp</span> Type of lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public places, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting, automotive headlamps and indoor cannabis grow operations.

<span class="mw-page-title-main">Hydrargyrum medium-arc iodide lamp</span>

Hydrargyrum medium-arc iodide (HMI) is the trademark name of Osram's brand of metal-halide gas discharge medium arc-length lamp, made specifically for film and entertainment applications. Hydrargyrum comes from the Greek name for the element mercury.

Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation, and the latter luminous efficacy of a light source or overall luminous efficacy.

<span class="mw-page-title-main">Gas-discharge lamp</span> Artificial light sources powered by ionized gas electric discharge

Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma.

<span class="mw-page-title-main">Grow light</span> Lighting to aid plant growth

A grow light is an electric light to help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.

<span class="mw-page-title-main">LED lamp</span> Electric light that produces light using LEDs

An LED lamp or LED light is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and fluorescent lamps. The most efficient commercially available LED lamps have efficiencies exceeding 200 lumens per watt (lm/W) and convert more than half the input power into light. Commercial LED lamps have a lifespan several times longer than both incandescent and fluorescent lamps.

United States Lighting Energy Policy is moving towards increased efficiency in order to lower greenhouse gas emissions and energy use. Lighting efficiency improvements in the United States can be seen through different standards and acts. The Energy Independence and Security Act of 2007 laid out changes in lighting legislation for the United States. This set up performance standards and the phase-out of incandescent light bulbs in order to require the use of more efficient fluorescent lighting. EISA 2007 is an effort to increase lighting efficiency by 25-30%. Opposition to EISA 2007 is demonstrated by the Better Use of Light Bulbs Act and the Light Bulb Freedom of Choice Act. The efforts to increase lighting efficiency are also demonstrated by the Energy Star program and the increase efficiency goals by 2011 and 2013. A ban on the manufacture and sale of most general purpose incandescent bulbs in the U.S. took effect on August 1, 2023.

<span class="mw-page-title-main">Edison light bulb</span> Type of lightbulb

Edison light bulbs, also known as filament light bulbs and retroactively referred to as antique light bulbs or vintage light bulbs, are either carbon- or early tungsten-filament incandescent light bulbs, or modern bulbs that reproduce their appearance. Most of the bulbs in circulation are reproductions of the wound filament bulbs made popular by Edison Electric Light Company at the turn of the 20th century. They are easily identified by the long and complicated windings of their internal filaments, and by the very warm-yellow glow of the light they produce.

References

  1. 1 2 Freebert, Ernest (2014). The Age of Edison: Electric Light and the Invention of Modern America. Penguin Books. ISBN   978-0-14-312444-3.
  2. Guarnieri, M. (2015). "Switching the Light: From Chemical to Electrical" (PDF). IEEE Industrial Electronics Magazine. 9 (3): 44–47. doi:10.1109/MIE.2015.2454038. hdl: 11577/3164116 . S2CID   2986686. Archived (PDF) from the original on 2022-02-14. Retrieved 2019-09-02.
  3. "Notes – Obituary". The Telegraphic Journal and Electrical Review. 24. The Electrical review, ltd.: 483 26 April 1889.
  4. Hannavy, John (2008). Encyclopedia of Nineteenth-century Photography. CRC Press. p. 1222. ISBN   978-0-415-97235-2.
  5. Kitsinelis, Spiros (1 November 2010). Light Sources: Technologies and Applications. Taylor & Francis US. p. 32. ISBN   978-1-4398-2079-7.
  6. Levy, Joel (1 March 2003). Really Useful: The Origins of Everyday Things . Firefly Books. p.  89. ISBN   978-1-55297-622-7.
  7. "Who really invented the light bulb?". www.sciencefocus.com.
  8. Reisert, Sarah (2015). "Let There be Light". Distillations Magazine. 1 (3): 44–45. Archived from the original on 22 March 2018. Retrieved 22 March 2018.
  9. Blake-Coleman, B. C. (Barrie Charles) (1992). Copper Wire and Electrical Conductors – The Shaping of a Technology. Harwood Academic Publishers. p. 127. ISBN   3-7186-5200-5. Archived from the original on 6 December 2017.
  10. "The History of the Light Bulb". Energy.gov. U.S. Department of Energy. Archived from the original on 20 August 2022. Retrieved 19 August 2022.
  11. "Gateshead Blue Plaques — Joseph Swan 1828 -1914". www.GatesheadLibraries.com. Gateshead Council. 2011. Archived from the original on 2018-03-17. Retrieved 19 December 2017.
  12. US 1082933A,William. D. Coolidge,"Tungsten and method of making the same for use as filaments of incandescent electric lamps and for other purposes."
  13. van Dulken, Stephen (2002). Inventing the 20th century: 100 inventions that shaped the world: from the airplane to the zipper. New York University Press. p. 42. ISBN   978-0-8147-8812-7.
  14. The dates of the 1910 Paris Motor Show are incorporated into this poster for the show.
  15. Testelin, Xavier. "Reportage – Il était une fois le néon No. 402" . Retrieved 2010-12-06. Claude lit the peristyle of the Grand Palais in Paris with neon tubes; this webpage includes a contemporary photograph that gives an impression of the effect. The webpage is part of an extensive selection of images of neon lighting; see "Reportage – Il était une fois le néon".
  16. Bright, Arthur Aaron Jr. (1949). The Electric-Lamp Industry: Technological Change and Economic Development from 1800 to 1947 . Macmillan Co. pp. 388–391.
  17. Okon, Thomas M.; Biard, James R. (2015). "The First Practical LED" (PDF). EdisonTechCenter.org. Edison Tech Center . Retrieved 2016-02-02.
  18. Energy Department moves forward with light bulb ban from News Nation Now on 4/3/2023
  19. "High Efficiency Incandescent Lighting | MIT Technology Licensing Office". tlo.mit.edu. Archived from the original on 19 August 2022. Retrieved 19 August 2022.
  20. "6 Ways to Save Money on Your Air Conditioning Bill". NOPEC. Archived from the original on 19 August 2022. Retrieved 19 August 2022.
  21. "Frequently asked questions about the regulation on ecodesign requirements for non-directional household lamps". European Commission. Archived from the original on 19 August 2022. Retrieved 19 August 2022.
  22. "Tungsten Halogen – Double Jacket". www.lamptech.co.uk. Retrieved 2023-03-06.
  23. "Should you not touch halogen capsule bulbs with your fingers?". The Lighting Company. Retrieved 2023-03-06.
  24. Perkowitz, Sidney; Henry, A. Joseph (23 November 1998). Empire of Light:: A History of Discovery in Science and Art. Joseph Henry Press. ISBN   978-0-309-06556-6. Archived from the original on 20 October 2021. Retrieved 10 November 2020.
  25. United States Environmental Protection Agency, OSWER (2015-07-23). "Hazardous Waste". US EPA. Archived from the original on 2015-06-29. Retrieved 3 November 2018.
  26. 1 2 Linkov, Jon (6 August 2019). "LED Headlights Can Be Brighter but Often Lack Clear Advantages". Consumer Reports. Retrieved 2023-03-06.
  27. "How to Choose Flashlights | REI Co-op". REI. Retrieved 2023-03-06.
  28. "See and Be Seen with The 13 Best Bike Lights for Every Kind of Ride". Bicycling. 2022-07-19. Retrieved 2023-03-06.
  29. 1 2 "LED Lighting". Energy.gov. Retrieved 2023-03-06.
  30. "The truth about LED lifespan and the longevity of your display". Samsung Business Insights. 2022-05-23. Retrieved 2023-03-06.
  31. "Laser diodes add intensity to narrow-beam lighting". 13 May 2019.
  32. "Laser Lighting: White-light lasers challenge LEDs in directional lighting applications". 22 February 2017.
  33. 1 2 Center, Edison Tech. "Arc Lamps – How They Work & History". www.edisontechcenter.org. Archived from the original on 2017-06-17. Retrieved 2018-01-13.
  34. 1 2 Whelan, M. (2013). "Arc Lamps". Resources. Edison Tech Center. Archived from the original on November 10, 2014. Retrieved November 22, 2014.
  35. Sussman, Herbert L. (2009). Victorian Technology: Invention, Innovation, and the Rise of the Machine. ABC-CLIO. p. 124. ISBN   978-0275991692.
  36. "Light Bulb Sizes, Shapes and Temperatures Charts – Bulb Reference Guide". www.superiorlighting.com. Retrieved 2022-10-07.
  37. "Lighting Facts Labels – LED Lighting". Bulbs.com. 2012-01-01. Retrieved 2023-04-10.
  38. MacKinnon, J. B. (2016-07-14). "The L.E.D. Quandary: Why There's No Such Thing as "Built to Last"". The New Yorker. ISSN   0028-792X. Archived from the original on 2017-11-14. Retrieved 2017-11-05.
  39. "The Great Lightbulb Conspiracy". IEEE Spectrum. 2014-09-24. Retrieved 2022-10-07.
  40. "When to Turn Off Your Lights". Energy.gov. Retrieved 2023-03-06.
  41. 1 2 "Artificial lights are eating away at dark nights — and that's not a good thing". Los Angeles Times. 2017-11-22. Retrieved 2022-10-07.
  42. "Light Pollution". sites.astro.caltech.edu. Retrieved 2022-10-07.
  43. Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo (2016-06-10). "The new world atlas of artificial night sky brightness". Science Advances. 2 (6): e1600377. arXiv: 1609.01041 . Bibcode:2016SciA....2E0377F. doi:10.1126/sciadv.1600377. ISSN   2375-2548. PMC   4928945 . PMID   27386582.
  44. Pain, Stephanie (2018-03-23). "There goes the night". Knowable Magazine | Annual Reviews. doi: 10.1146/knowable-032218-043601 .
  45. "Easy-Bake Oven". The Strong National Museum of Play. Retrieved 2022-10-07.
  46. Lee, Ernest; Koo, John; Berger, Tim (May 2005). "UVB phototherapy and skin cancer risk: a review of the literature". International Journal of Dermatology. 44 (5): 355–360. doi:10.1111/j.1365-4632.2004.02186.x. ISSN   0011-9059. PMID   15869531. S2CID   11332443.
  47. Pei, Susan; Inamadar, Arun C.; Adya, Keshavmurthy A.; Tsoukas, Maria M. (May 2015). "Light-based therapies in acne treatment". Indian Dermatology Online Journal. 6 (3): 145–157. doi: 10.4103/2229-5178.156379 . ISSN   2229-5178. PMC   4439741 . PMID   26009707.
  48. Hamilton, F.L.; Car, J.; Lyons, C.; Car, M.; Layton, A.; Majeed, A. (June 2009). "Laser and other light therapies for the treatment of acne vulgaris: systematic review". British Journal of Dermatology. 160 (6): 1273–1285. doi:10.1111/j.1365-2133.2009.09047.x. PMID   19239470. S2CID   6902995.
  49. Patrizi, Annalisa; Raone, Beatrice; Ravaioli, Giulia Maria (2015-10-05). "Management of atopic dermatitis: safety and efficacy of phototherapy". Clinical, Cosmetic and Investigational Dermatology. 8: 511–520. doi: 10.2147/CCID.S87987 . PMC   4599569 . PMID   26491366.
  50. Morton, C.A.; Brown, S.B.; Collins, S.; Ibbotson, S.; Jenkinson, H.; Kurwa, H.; Langmack, K.; Mckenna, K.; Moseley, H.; Pearse, A.D.; Stringer, M.; Taylor, D.K.; Wong, G.; Rhodes, L.E. (April 2002). "Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group". British Journal of Dermatology. 146 (4): 552–567. doi:10.1046/j.1365-2133.2002.04719.x. ISSN   0007-0963. PMID   11966684. S2CID   7137209.
  51. Thompson, C.; Stinson, D.; Smith, A. (1990-09-22). "Seasonal affective disorder and season-dependent abnormalities of melatonin suppression by light". The Lancet. 336 (8717): 703–706. doi:10.1016/0140-6736(90)92202-S. ISSN   0140-6736. PMID   1975891. S2CID   34280446.
  52. Danilenko, K. V.; Ivanova, I. A. (2015-07-15). "Dawn simulation vs. bright light in seasonal affective disorder: Treatment effects and subjective preference". Journal of Affective Disorders. 180: 87–89. doi:10.1016/j.jad.2015.03.055. ISSN   0165-0327. PMID   25885065.
  53. Sanassi, Lorraine A. (February 2014). "Seasonal affective disorder: Is there light at the end of the tunnel?". JAAPA. 27 (2): 18–22. doi: 10.1097/01.JAA.0000442698.03223.f3 . ISSN   1547-1896. PMID   24394440. S2CID   45234549.
  54. Cremer, R. J.; Perryman, P. W.; Richards, D. H. (1958-05-24). "Influence of Light on the Hyperbilirubinæmia of Infants". The Lancet. 271 (7030): 1094–1097. doi:10.1016/S0140-6736(58)91849-X. ISSN   0140-6736. PMID   13550936.
  55. Anderson, Candice Megan; Kandasamy, Yogavijayan; Kilcullen, Meegan (2022-10-01). "The efficacy of home phototherapy for physiological and non-physiological neonatal jaundice: A systematic review". Journal of Neonatal Nursing. 28 (5): 312–326. doi:10.1016/j.jnn.2021.08.010. ISSN   1355-1841. S2CID   238646014.
  56. Pettersson, M.; Eriksson, M.; Albinsson, E.; Ohlin, A. (2021-05-01). "Home phototherapy for hyperbilirubinemia in term neonates—an unblinded multicentre randomized controlled trial". European Journal of Pediatrics. 180 (5): 1603–1610. doi:10.1007/s00431-021-03932-4. ISSN   1432-1076. PMC   8032579 . PMID   33469713.
  57. "How to Choose the Proper Grow Light for Your Indoor Garden". primalgrowgear.com. 2021-08-27. Archived from the original on 2022-01-05. Retrieved 2022-01-05.
  58. Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi (April 2009). "Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves are Green". Plant and Cell Physiology. 50 (4): 684–697. doi: 10.1093/pcp/pcp034 . ISSN   1471-9053. PMID   19246458.
  59. Fuller, Graham (2014). Turkey and the Arab Spring: Leadership in the Middle East. New York: Bozog Press. p. 345. ISBN   978-0993751400.
  60. Foundation, Thomson. "A protester holds a light bulb, the official symbol of Turkey's ruling AK Party (AKP), with a Nazi swastika sign painted on it during an anti-government protest at Taksim Square in Istanbul". news.trust.org. Archived from the original on 3 November 2018. Retrieved 3 November 2018.
  61. "15 years of Turkey's Justice and Development Party" . Retrieved 3 November 2018.