Balanced-arm lamp

Last updated
Anglepoise model 1227 from 1935 Anglepoise 1227.jpg
Anglepoise model 1227 from 1935

A balanced-arm lamp, sometimes called a floating arm lamp, is a lamp with an adjustable folding arm which is constructed such that the force due to gravity is always counteracted by springs, regardless of the position of the arms of the lamp. Many lamp brands (such as the Anglepoise, originator of the concept, and Luxo L-1), as well as other devices, use this principle.

Contents

Configuration

The five terms

This article uses the terminology:

Compare human arm.PNG

for the five basic parts of these lamps.

The general design

A balanced-arm lamp has a base, a stand or body, (in most cases) two connected arms (in many cases fitted with springs), and a lamp-head.

The lamp can be moved into almost any position, and the balancing device will maintain the position until moved again.

The same overall mechanism can be employed in other devices with similar requirements, such as:

For the physics and theory behind balanced-arm lamps, see Classical mechanics, linkage and torque.

There are different methods to balance the arms and the lamp-cap:

Lamps balanced with springs

Compression and tension springs at rest and under load Pressure and expansion springs.PNG
Compression and tension springs at rest and under load

There are many variations of construction with springs. Springs can be located on the mechanical equivalent of the forearm or the upper arm, or both, as well as nearer to the base. Some lamps use tension springs, and others use compression springs. The adjacent image shows (left to right) a compression spring at rest, then under load, followed by a tension spring at rest, and then under load. Springs have a limited lifting capacity and extension length. Some springs can resonate, producing low-level unwanted noise.

One tension spring

Spring-balanced upper arm, flexible forearm

A flexible forearm Extension spring balanced arm support a flexible arm.PNG
A flexible forearm

This lamp has a stiff flexible tube as its forearm, and a spring-balanced arm to support it near the middle. That way there is a flexible lamp with a long reach.

Tension spring over wheels

A spring over two wheels Extension spring rolls over 2 wheels.PNG
A spring over two wheels

The wheel to control the forearm is smaller than the wheel that controls the upper arm. The lamp cap rotates the same direction as the upper arm and forearm.

Two arms, one spring, one toothed wheel

A single spring controlling upper arm and forearm 2 arm 1 spring 1 Tooth wheel.PNG
A single spring controlling upper arm and forearm

With this technique the tension spring has a double function: it controls both the forearm and the upper arm. This is not a common arm lamp system. The lamp cap rotates the same direction as the upper arm and forearm.

Two tension springs

Two parallelograms and two tension spring sets

An upper arm showing three parallel bars Upper-arm 3 bars parallel.jpg
An upper arm showing three parallel bars

One tension spring set controls the forearm, which is a parallelogram having two bars. A stronger spring set controls the upper arm, which has three parallel bars (see photo, left). (There is a less stable construction with two parallel bars in the upper arm which is less expensive to manufacture.) Due to the parallel linkage of the lamp, the lamp cap keeps pointing in the same vertical direction when adjusting the height of the lamp. As with most balanced-arm lamps, the whole assembly can rotate in the horizontal plane, and is mounted on a stable foot.

One parallelogram and two extension spring sets

Anglepoise-style lamp Angle Poise Lamp Diagram 2.png
Anglepoise-style lamp

A lamp like the Anglepoise lamp has one parallelogram and two extension springs. One spring controls the shortest arm of a parallelogram. Parallel to this shortest arm there is the forearm. To keep these arms parallel there are two other parallel arms (upper arm) that are controlled by a second extension spring. The lamp cap rotates the same direction as the upper arm and forearm.

Single forearm bar, one parallelogram, two tension spring sets

Diagram of a single-forearm lamp Single Lamp arm, parralellogram ,2extension springs.PNG
Diagram of a single-forearm lamp

The forearm of this lamp consist of a single bar. When it is adjusted, the angle of the lamp cap changes along with the arm.

Tension springs within the arms

Tension springs within the arms Lamp 2x arm, cable, extension springs.PNG
Tension springs within the arms

A lamp like the Tolomeo desk lamp has no parallelograms in either arm. In this modern lamp the tension springs are hidden in the arms. The lamp cap rotates the same direction as the upper arm and forearm.

Compression springs

Compression springs in the arms

Compression springs in the arms 2 compression springs 1 parallelogram lamp.PNG
Compression springs in the arms

The short arms (green) stay parallel. One spring puts pull force on the blue arm. (If the blue arm is tilted back the second spring on this arm gets push force.) The blue arm controls the two parallel arms (red) that make up the upper arm. The other spring puts pull force on the other blue arm. This arm controls the forearm (magenta). The two springs can be the same size; one spring has to lift more weight but is more vertical. The other spring lifts less weight but is more horizontal.

Compression springs near the foot

Spring-balanced bending arm lamp Spring balanced bending arm lamp.JPG
Spring-balanced bending arm lamp

One compression spring controls a very short arm (grey). The Roller chain cable connects this arm parallel to the forearm (yellow). The longer spring controls the (blue) arm. The body (red) can turn in the horizontal plane. The body is connected to a stable foot. The body can be smaller because the pressure springs can protrude below the body.

A compression spring with one parallelogram

A compression spring with one parallelogram One Pressure spring one parallelogram.PNG
A compression spring with one parallelogram

In this method, just one compression spring controls a pantographic arm.


Lamps balanced by pressure and friction

Rubber between two "parallel" arms

In this construction (commonly found in Italian lamps) gravity causes the parallelogram to deform such that the gap between the long arms becomes smaller. This in turn increases pressure on the rubber in the gap, and the resulting friction holds the arm in place.

Friction rubber arm lamp.PNG
Friction rubber arm
Squeezing rubber arm lamp outer position.PNG
Squeezing rubber arm
The arms are balanced by pressure and friction

Friction from twisting

Lamp with flexible bars Flexeble bars lamp.PNG
Lamp with flexible bars

The friction between the twisted arm controls the movement between the arms.

Friction between the upper arm and the forearm

Another lamp with flexible bars Tighten bold friction arm system.PNG
Another lamp with flexible bars

This arm system also works with friction.

Lamps balanced with counterweight

Lamps balanced with one counterweight

Advantages of one swinging counterbalance is that the lamp can have a longer arm length.

Disadvantages are that the lamp is inherently less balanced, thus it needs a heavy stand to remain stable.

A single counterweight

Single weight chain lamp 1 weight chain lamp.PNG
Single weight chain lamp

This construction uses a chain to keep the arm with the counterweight and the forearm parallel. The lamp-cap and counterweight move in opposite directions (both away from the base or both towards it). The balance that is required is shown by the following formula:

d1 = Lamp-cap to base; m1 = weight of lamp-cap
d2 = counterweight to base; m2 = weight of counterweight
m1 × d1 = m2 × d2

One parallelogram with one counterweight

One parallelogram and one counterweight 1 Parallelogram + 1 Counterweight.PNG
One parallelogram and one counterweight

This lamp has a heavy base, with a parallelogram pantograph construction formed by bars which are all hinged on each other. One long bar extends past the parallelogram construction and has a counterweight. One short bar also extends past the parallelogram construction and holds the lamp cap. The base has an arc formed stand so the counterweight does not hit the stand in vertical position.

One parallelogram with an extended counterweight

Pantographic parallel arms balance a light-weight-lamp and counter-weight.gif

This lamp is similar to the one above, but as the counterweight has a low position the lamp needs no heavy foot for stability as the center of gravity is low. The counterbalance does not swing, but slides and rotates safely around the center of the stand.

Three parallelograms with one counterweight

Complex counter weight arm lamp.PNG

This lamp stand has a complex construction with matching narrow openings. This lamp is out of production.

Lamps balanced with two counterweights

A single arm with two counterweights

Counter balanced straight arm lamp.PNG

With this lamp the movement is very limited (the arm moves up and down only) but the technique is nice to look at. As the forearm becomes more horizontal the weight ceases to be balanced on both side of the base. The weight of the base is needed to avoid over-balancing.

Two arms with two counterweights

Lamp 2 counter weight.PNG
Dimension diagram
Lamp 2 arms 2 counter weights outer position.PNG
Outer position
Lamp with two arms and two counterweights

A lamp type like the Tizio works like this. A balancing arm (the forearm) has on one side of an axis a small counterweight and on the other side a lamp cap. These parts are lifted by a second bigger balancing arm (the upper arm) that has on the other side of a second axis a heavier counterweight. The lamp designed by Edouard-Wilfrid Buquet in 1927 works in this way. The lamp is in the collection of the Museum of Modern Art. The two axes have a different angle, and this has some advantages.

Lamp-cap x fore-Arm = Arm x Small weight (Lamp-cap + Small weight) x upper-arm = Arm x Big weight.

Big and small counterweight arm-lamp.gif

Lamps using other systems

Here are some less common ways of balancing arms.

Lamps having a vertical axis

Lamps having a vertical axis Arm-lamps having a vertical axis.PNG
Lamps having a vertical axis

This kind of lamp has a forearm balanced by weight or springs. Its disadvantage is that the upper arm cannot point up or forwards.

Mechanical coupling devices

Mechanical locking jointlamp Mechanical locking joint.PNG
Mechanical locking jointlamp

This lamp works by coupling together the upper arm and the forearm. It is called a gravity-locked or cam-locked elbow. [1]

Hydraulic arm

Moving streetlamps in Rotterdam GraphyArchy - Wikipedia 00323.jpg
Moving streetlamps in Rotterdam

The pivoting arm streetlamps in the Schouwburgplein, Rotterdam use a pair of hydraulic cylinders to control the forearm and upper arm.

Pneumatic arm

Pneumatic arm lamp.PNG

Arm lamp with a pneumatic cylinder. The gravity compress the air in the pneumatic cylinder.

See also

Patents history

Classifications IPC: F21V21/26

International patent category: B23B31/171


Related Research Articles

<span class="mw-page-title-main">Shock absorber</span> Mechanical component

A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy which is then dissipated. Most shock absorbers are a form of dashpot.

<span class="mw-page-title-main">Counterweight</span> Equivalent weight that balances a mechanical system

A counterweight is a weight that, by applying an opposite force, provides balance and stability of a mechanical system. The purpose of a counterweight is to make lifting the load faster and more efficient, which saves energy and causes less wear and tear on the lifting machine.

<span class="mw-page-title-main">Wheellock</span> Firearm action

A wheellock, wheel-lock, or wheel lock is a friction-wheel mechanism which creates a spark that causes a firearm to fire. It was the next major development in firearms technology after the matchlock and the first self-igniting firearm. Its name is from its rotating steel wheel to provide ignition. Developed in Europe around 1500, it was used alongside the matchlock and later the snaplock (1540s), the snaphance (1560s), and the flintlock.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

In engineering, iso-elastic refers to a system of elastic and tensile parts which are arranged in a configuration which isolates physical motion at one end in order to minimize or prevent similar motion from occurring at the other end. This type of device must be able to maintain angular direction and load-bearing over a large range of motion.

<span class="mw-page-title-main">Cantilever bridge</span> Bridge built using cantilevers

A cantilever bridge is a bridge built using structures that project horizontally into space, supported on only one end. For small footbridges, the cantilevers may be simple beams; however, large cantilever bridges designed to handle road or rail traffic use trusses built from structural steel, or box girders built from prestressed concrete.

<span class="mw-page-title-main">Weighing scale</span> Instrument to measure the weight of an object

A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances.

Bicep curls are a group of weight training exercises in which a person bends their arm towards their body at the elbow in order to make their biceps stronger.

<span class="mw-page-title-main">Fly system</span> Rigging above a theater stage

A fly system, or theatrical rigging system, is a system of ropes, pulleys, counterweights and related devices within a theater that enables a stage crew to fly (hoist) quickly, quietly and safely components such as curtains, lights, scenery, stage effects and, sometimes, people. Systems are typically designed to fly components between clear view of the audience and out of view, into the large space, the fly loft, above the stage.

Engine balance refers to how the inertial forces produced by moving parts in an internal combustion engine or steam engine are neutralised with counterweights and balance shafts, to prevent unpleasant and potentially damaging vibration. The strongest inertial forces occur at crankshaft speed and balance is mandatory, while forces at twice crankshaft speed can become significant in some cases.

<span class="mw-page-title-main">Roberval balance</span>

The Roberval balance is a weighing scale presented to the French Academy of Sciences by the French mathematician Gilles Personne de Roberval in 1669.

<span class="mw-page-title-main">Ball joint</span> Spherical bearing most commonly used in automobile steering mechanisms

In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles, and are used on virtually every automobile made. They bionically resemble the ball-and-socket joints found in most tetrapod animals.

A bent-over row is a weight training exercise that targets a variety of back muscles. Which ones are targeted varies on form. The bent over row is often used for both bodybuilding and powerlifting.

A balance board is a device used as a circus skill, for recreation, balance training, athletic training, brain development, therapy, musical training and other kinds of personal development.

<span class="mw-page-title-main">Anglepoise lamp</span> Balanced-arm lamp

The Anglepoise lamp is a balanced-arm lamp designed in 1932 by British designer George Carwardine.

<span class="mw-page-title-main">Steelyard balance</span> Type of weight scale

A steelyard balance, steelyard, or stilyard is a straight-beam balance with arms of unequal length. It incorporates a counterweight which slides along the longer arm to counterbalance the load and indicate its weight. A steelyard is also known as a Roman steelyard or Roman balance.

<span class="mw-page-title-main">Parallel manipulator</span>

A parallel manipulator is a mechanical system that uses several computer-controlled serial chains to support a single platform, or end-effector. Perhaps, the best known parallel manipulator is formed from six linear actuators that support a movable base for devices such as flight simulators. This device is called a Stewart platform or the Gough-Stewart platform in recognition of the engineers who first designed and used them.

A loading arm permits the transfer of liquid or liquefied gas from one tank to another through an articulated pipe system consisting of rigid piping and swivel joints to obtain flexibility.

<span class="mw-page-title-main">Double-beam drawbridge</span>

A double-beam drawbridge, seesaw or folding bridge is a movable bridge. It opens by rotation about a horizontal axis parallel to the water. Historically, the double-beam drawbridge has emerged from the drawbridge. Unlike a drawbridge, a double-beam drawbridge has counterweights, so that opening requires much less energy.

References

  1. See here
  2. "Rebel'n adventurous myster shadow-sky's free discography".