Guide RNA

Last updated

Guide RNA (gRNA) or single guide RNA (sgRNA) is a short sequence of RNA that functions as a guide for the Cas9-endonuclease or other Cas-proteins [1] that cut the double-stranded DNA and thereby can be used for gene editing. [2] In bacteria and archaea, gRNAs are a part of the CRISPR-Cas system that serves as an adaptive immune defense that protects the organism from viruses. Here the short gRNAs serve as detectors of foreign DNA and direct the Cas-enzymes that degrades the foreign nucleic acid. [1] [3]

Contents

History

RNA 편집 가이드 RNA는 1990년 B. Blum, N. Bakalara 및 L. Simpson이 진핵 기생충인 Leishmania tarentolaes 미토콘드리아 맥시서클 DNA에서 Northern Blot Hybridization을 통해 발견했습니다. [4] 또한 gRNA와 CRISPR-Cas 시스템의 구조와 기능을 확인하기 위해 2000년대 중반과 그 이후 몇 년 동안 여러 연구가 수행되었으며, [2] 가장 주목할만한 돌파구는 2012년이었습니다. gRNA를 사용하여 Cas9 엔도뉴클레아제를 유도하여 이중 가닥 DNA에 표적 특이적 절단을 도입할 수 있다는 사실을 발견했습니다. 이 발견은 2020년 제니퍼 다우드나(Jennifer Doudna) 와 엠마누엘 샤르펜티에(Emmanuelle Charpentier) 의 노벨상 수상으로 이어졌습니다

Guide RNA in Protists

Trypanosomatid protists and other kinetoplastids have a post-transcriptional RNA modification process known as "RNA editing" that performs a uridine insertion/deletion inside the mitochondria. [4] [5] This mitochondrial DNA is circular and is divided into maxicircles and minicircles. A mitochondrion contains about 50 maxicircles which have both coding and non coding regions and consists of approximately 20 kilo bases (kb). The coding region is highly conserved (16-17kb) and the non-coding region varies depending on the species. Minicircles are small (around 1 kb) but more numerous than maxicircles, a mitochondrion contains several thousands minicircles. [6] [7] [8] Maxicircles can encode "cryptogenes" and some gRNAs; minicircles can encode the majority of gRNAs. Some gRNA genes show identical insertion and deletion sites even if they have different sequences, whereas other gRNA sequences are not complementary to pre-edited mRNA. Maxicircles and minicircles molecules are catenated into a giant network of DNA inside the mitochondrion. [9] [8] [10]

The majority of maxicircle transcripts cannot be translated into proteins due to frameshifts in their sequences. These frameshifts are corrected post-transcriptionally through the insertion and deletion of uridine residues at precise sites, which then create an open reading frame. This open reading frame is subsequently translated into a protein that is homologous to mitochondrial proteins found in other cells. [11] The process of uridine insertion and deletion is mediated by short guide RNAs (gRNAs),which encode the editing information through complementary sequences, and allow for base pairing between guanine and uracil (GU) as well as between guanine and cytosine (GC), facilitating the editing process. [12]

The function of the gRNA-mRNA Complex

Guide RNAs are mainly transcribed from the intergenic region of DNA maxicircle and have sequences complementary to mRNA. The 3' end of gRNAs contains an oligo 'U' tail (5-24 nucleotides in length) which is in a nonencoded region but interacts and forms a stable complex with A and G rich regions of pre-edited mRNA and gRNA, that are thermodynamically stabilized by a 5' and 3' anchors. [13] This initial hybrid helps in the recognition of specific mRNA site to be edited. [14]

RNA editing typically progresses from the 3' to the 5' end on the mRNA. The initial editing process begins when a gRNA forms an RNA duplex with a complementary mRNA sequence located just downstream of the editing site. This pairing recruits a number of ribonucleoprotein complexes that direct the cleavage of the first mismatched base adjacent to the gRNA-mRNA anchor. Following this, Uridylyltransferase inserts a 'U' at the 3' end, and RNA ligase then joins the two severed ends. The process repeats at the next upstream editing site in a similar manner. A single gRNA usually encodes the information for several editing sites (an editing "block"), the editing of which produces a complete gRNA/mRNA duplex. This process of sequential editing is known as the enzyme cascade model. [14] [12] [15]

In the case of "pan-edited" mRNAs, [16] the duplex unwinds and another gRNA forms a duplex with the edited mRNA sequence, initiating another round of editing. These overlapping gRNAs form an editing "domain". Some genes contain multiple editing domains. [17] The extent of editing for any particular gene varies among trypanosomatid species. The variation consists of the loss of editing at the 3' side, probably due to the loss of minicircle sequence classes that encode specific gRNAs. A retroposition [18] model has been proposed to explain the partial, and in some cases, complete loss of editing through evolution. Although the loss of editing is typically lethal, such losses have been observed in old laboratory strains. The maintenance of editing over the long evolutionary history of these ancient protists suggests the presence of a selective advantage, the exact nature of which is still uncertain. [16]

It is not clear why trypanosomatids utilize such an elaborate mechanism to produce mRNAs. It might have originated in the early mitochondria of the ancestor of the kintoplastid protist lineage, since it is present in the bodonids which are ancestral to the trypanosomatids, [19] and may not be present in the euglenoids, which branched from the same common ancestor as the kinetoplastids.

Guide RNA sequences

In the protozoan Leishmania tarentolae, 12 of the 18 mitochondrial genes are edited using this process. One such gene is Cyb. The mRNA is actually edited twice in succession. For the first edit, the relevant sequence on the mRNA is as follows:

mRNA 5' AAAGAAAAGGCUUUAACUUCAGGUUGU 3'

The 3' end is used to anchor the gRNA (gCyb-I gRNA in this case) by basepairing (some G/U pairs are used). The 5' end does not exactly match and one of three specific endonucleases cleaves the mRNA at the mismatch site.

gRNA 3' AAUAAUAAAUUUUUAAAUAUAAUAGAAAAUUGAAGUUCAGUA 5' mRNA 5'   A  A   AGAAA   A G  G C UUUAACUUCAGGUUGU 3'

The mRNA is now "repaired" by adding U's at each editing site in succession, giving the following sequence:

gRNA 3' AAUAAUAAAUUUUUAAAUAUAAUAGAAAAUUGAAGUUCAGUA 5' mRNA 5' UUAUUAUUUAGAAAUUUAUGUUGUCUUUUAACUUCAGGUUGU 3'

This particular gene has two overlapping gRNA editing sites. The 5' end of this section is the 3' anchor for another gRNA (gCyb-II gRNA). [9]

Guide RNA in Prokaryotes

CRISPR In Prokaryotes

Prokaryotes as bacteria and archaea, use CRISPR (clustered regularly interspaced short palindromic repeats) and its associated Cas enzymes, as their adaptive immune system. When prokaryotes are infected by phages, and manage to fend off the attack, specific Cas enzymes cut the phage DNA (or RNA) and integrate the fragments into the CRISPR sequence interspaces. These stored segments are then recognized during future virus attacks, allowing Cas enzymes to use RNA copies of these segments, along with their associated CRISPR sequences, as gRNA to identify and neutralize the foreign sequences. [20] [21] [22]

Schematic Structure of the Cas9-sgRNA-DNA Ternary Complex Schematic Structure of the Cas9-sgRNA-DNA Ternary Complex.svg
Schematic Structure of the Cas9-sgRNA-DNA Ternary Complex

Structure

Guide RNA targets the complementary sequences by simple Watson-Crick base pairing. [23] In the type II CRISPR/cas system, the sgRNA directs the Cas-enzyme to target specific regions in the genome for targeted DNA cleavage. The sgRNA is an artificially engineered combination of two RNA molecules: CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The crRNA component is responsible for binding to the target-specific DNA region, while the tracrRNA component is responsible for the activation of the Cas9 endonuclease activity. These two components are linked by a short tetraloop structure, resulting in the formation of the sgRNA. The tracrRNA consist of base pairs that form a stem-loop structure, enabling its attachment to the endonuclease enzyme. The transcription of the CRISPR locus generates crRNA, which contains spacer regions flanked by repeat sequences, typically 18-20 base pairs (bp) in length. This crRNA guides the Cas9 endonuclease to the complementary target region on the DNA, where it cleaves the DNA, forming what is known as the effector complex. Modifications in the crRNA sequence within the sgRNA can alter the binding location, allowing for precise targeting of different DNA regions, effectively making it a programmable system for genome editing. [24] [25] [26]

Applications

Designing gRNAs

The targeting specificity of CRISPR-Cas9 is determined by the 20-nucleotide (nt) sequence at the 5' end of the gRNA. The desired target sequence must precede the Protospacer Adjacent Motif (PAM), which is a short DNA sequence usually 2-6 base pairs in length that follows the DNA region targeted for cleavage by the CRISPR system, such as CRISPR-Cas9. The PAM is required for a Cas nuclease to cut and is usually located 3-4 nucleotides downstream from the cut site. Once the gRNA base pairs with the target, Cas9 induces a double-strand break about 3 nucleotides upstream of the PAM. [27] [28]

The optimal GC content of the guide sequence should be over 50%. A higher GC content enhances the stability of the RNA-DNA duplex and reduces off-target hybridization. The length of guide sequences is typically 20 bp, but they can also range from 17 to 24 bp. A longer sequence minimizes off-target effects. Guide sequences shorter than 17 bp are at risk of targeting multiple loci. [29] [30] [24]

CRISPR Cas9

The cas9 complex, illustrating the gRNA, PAM and the double-stranded break induced in the target DNA. GRNA-Cas9-colourfriendly.png
The cas9 complex, illustrating the gRNA, PAM and the double-stranded break induced in the target DNA.

CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas9 is a technique used for gene editing and gene therapy. Cas is an endonuclease enzyme that cuts DNA at a specific location directed by a guide RNA. This is a target-specific technique that can introduce gene knockouts or knock-ins depending on the double strand repair pathway. Evidence shows that both in vitro and in vivo, tracrRNA is required for Cas9 to bind to the target DNA sequence. The CRISPR-Cas9 system consists of three main stages. The first stage involves the extension of bases in the CRISPR locus region by addition of foreign DNA spacers in the genome sequence. Proteins like cas1 and cas2, assist in finding new spacers. The next stage involves transcription of CRISPR: pre-crRNA (precursor CRISPR RNA) are expressed by the transcription of CRISPR repeat-spacer array. Upon further modification, the pre-crRNA is converted to single spacer flanked regions forming short crRNA. RNA maturation process is similar in type I and III but different in type II. The third stage involves binding of cas9 protein and directing it to cleave the DNA segment. The Cas9 protein binds to a combined form of crRNA and tracrRNA forming an effector complex. This serves as guide RNA for the cas9 protein directing its endonuclease activity. [31] [2] [3]

RNA mutagenesis

One important method of gene regulation is RNA mutagenesis, which can be introduced through RNA editing with the assistance of gRNA. [32] Guide RNA replaces adenosine with inosine at specific target sites, modifying the genetic code. [33] Adenosine deaminase acts on RNA, bringing post transcriptional modification by altering codons and different protein functions. Guide RNAs are small nucleolar RNAs that, along with riboproteins, perform intracellular RNA alterations such as ribomethylation in rRNA and the introduction of pseudouridine in preribosomal RNA. [34] Guide RNAs bind to the antisense RNA sequence and regulate RNA modification. It has been observed that small interfering RNA (siRNA) and micro RNA (miRNA) are generally used as target RNA sequences, and modifications are comparatively easy to introduce due to their small size. [35]

See also

Related Research Articles

Gene knockouts are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs.

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

<span class="mw-page-title-main">CRISPR</span> Family of DNA sequence found in prokaryotic organisms

CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral defense system of prokaryotes and provide a form of acquired immunity. CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.

<span class="mw-page-title-main">RNA editing</span> Molecular process

RNA editing is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms and is one of the most evolutionarily conserved properties of RNAs. RNA editing may include the insertion, deletion, and base substitution of nucleotides within the RNA molecule. RNA editing is relatively rare, with common forms of RNA processing not usually considered as editing. It can affect the activity, localization as well as stability of RNAs, and has been linked with human diseases.

<span class="mw-page-title-main">Kinetoplast</span>

A kinetoplast is a network of circular DNA inside a mitochondrion that contains many copies of the mitochondrial genome. The most common kinetoplast structure is a disk, but they have been observed in other arrangements. Kinetoplasts are only found in Excavata of the class Kinetoplastida. The variation in the structures of kinetoplasts may reflect phylogenic relationships between kinetoplastids. A kinetoplast is usually adjacent to the organism's flagellar basal body, suggesting that it is bound to some components of the cytoskeleton. In Trypanosoma brucei this cytoskeletal connection is called the tripartite attachment complex and includes the protein p166.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

In molecular biology, trans-activating CRISPR RNA (tracrRNA) is a small trans-encoded RNA. It was first discovered by Emmanuelle Charpentier in her study of the human pathogen Streptococcus pyogenes, a type of bacteria that causes harm to humanity. In bacteria and archaea, CRISPR-Cas constitute an RNA-mediated defense system that protects against viruses and plasmids. This defensive pathway has three steps. First, a copy of the invading nucleic acid is integrated into the CRISPR locus. Next, CRISPR RNAs (crRNAs) are transcribed from this CRISPR locus. The crRNAs are then incorporated into effector complexes, where the crRNA guides the complex to the invading nucleic acid and the Cas proteins degrade this nucleic acid. There are several CRISPR system subtypes.

<span class="mw-page-title-main">Cas9</span> Microbial protein found in Streptococcus pyogenes M1 GAS

Cas9 is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic engineering applications. Its main function is to cut DNA and thereby alter a cell's genome. The CRISPR-Cas9 genome editing technique was a significant contributor to the Nobel Prize in Chemistry in 2020 being awarded to Emmanuelle Charpentier and Jennifer Doudna.

<span class="mw-page-title-main">CRISPR interference</span> Genetic perturbation technique

CRISPR interference (CRISPRi) is a genetic perturbation technique that allows for sequence-specific repression of gene expression in prokaryotic and eukaryotic cells. It was first developed by Stanley Qi and colleagues in the laboratories of Wendell Lim, Adam Arkin, Jonathan Weissman, and Jennifer Doudna. Sequence-specific activation of gene expression refers to CRISPR activation (CRISPRa).

A protospacer adjacent motif (PAM) is a 2–6-base pair DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. The PAM is a component of the invading virus or plasmid, but is not found in the bacterial host genome and hence is not a component of the bacterial CRISPR locus. Cas9 will not successfully bind to or cleave the target DNA sequence if it is not followed by the PAM sequence. PAM is an essential targeting component which distinguishes bacterial self from non-self DNA, thereby preventing the CRISPR locus from being targeted and destroyed by the CRISPR-associated nuclease.

CRISPR-Cas design tools are computer software platforms and bioinformatics tools used to facilitate the design of guide RNAs (gRNAs) for use with the CRISPR/Cas gene editing system.

<span class="mw-page-title-main">Cas12a</span> DNA-editing technology

Cas12a is a subtype of Cas12 proteins and an RNA-guided endonuclease that forms part of the CRISPR system in some bacteria and archaea. It originates as part of a bacterial immune mechanism, where it serves to destroy the genetic material of viruses and thus protect the cell and colony from viral infection. Cas12a and other CRISPR associated endonucleases use an RNA to target nucleic acid in a specific and programmable matter. In the organisms from which it originates, this guide RNA is a copy of a piece of foreign nucleic acid that previously infected the cell.

A cryptogene is a gene that has had its transcript edited. This phenomenon is observed in various organisms, particularly in Kinetoplastids and Myxomycetes, where the process plays a crucial role in mitochondrial gene expression.

No-SCAR genome editing is an editing method that is able to manipulate the Escherichia coli genome. The system relies on recombineering whereby DNA sequences are combined and manipulated through homologous recombination. No-SCAR is able to manipulate the E. coli genome without the use of the chromosomal markers detailed in previous recombineering methods. Instead, the λ-Red recombination system facilitates donor DNA integration while Cas9 cleaves double-stranded DNA to counter-select against wild-type cells. Although λ-Red and Cas9 genome editing are widely used technologies, the no-SCAR method is novel in combining the two functions; this technique is able to establish point mutations, gene deletions, and short sequence insertions in several genomic loci with increased efficiency and time sensitivity.

CRISPR activation (CRISPRa) is a type of CRISPR tool that uses modified versions of CRISPR effectors without endonuclease activity, with added transcriptional activators on dCas9 or the guide RNAs (gRNAs).

Off-target genome editing refers to nonspecific and unintended genetic modifications that can arise through the use of engineered nuclease technologies such as: clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9, transcription activator-like effector nucleases (TALEN), meganucleases, and zinc finger nucleases (ZFN). These tools use different mechanisms to bind a predetermined sequence of DNA (“target”), which they cleave, creating a double-stranded chromosomal break (DSB) that summons the cell's DNA repair mechanisms and leads to site-specific modifications. If these complexes do not bind at the target, often a result of homologous sequences and/or mismatch tolerance, they will cleave off-target DSB and cause non-specific genetic modifications. Specifically, off-target effects consist of unintended point mutations, deletions, insertions inversions, and translocations.

<span class="mw-page-title-main">CRISPR gene editing</span> Gene editing method

CRISPR gene editing standing for "Clustered Regularly Interspaced Short Palindromic Repeats" is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

Prime editing is a 'search-and-replace' genome editing technology in molecular biology by which the genome of living organisms may be modified. The technology directly writes new genetic information into a targeted DNA site. It uses a fusion protein, consisting of a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase enzyme, and a prime editing guide RNA (pegRNA), capable of identifying the target site and providing the new genetic information to replace the target DNA nucleotides. It mediates targeted insertions, deletions, and base-to-base conversions without the need for double strand breaks (DSBs) or donor DNA templates.

<span class="mw-page-title-main">CRISPR RNA</span> RNA transcript from the CRISPR locus

CRISPR RNA or crRNA is a RNA transcript from the CRISPR locus. CRISPR-Cas is an adaptive immune system found in bacteria and archaea to protect against mobile genetic elements, like viruses, plasmids, and transposons. The CRISPR locus contains a series of repeats interspaced with unique spacers. These unique spacers can be acquired from MGEs.

The Fanzor (Fz) protein is an eukaryotic, RNA-guided DNA endonuclease, which means it is a type of DNA cutting enzyme that uses RNA to target genes of interest. It has been recently discovered and explored in a number of studies. In bacteria, RNA-guided DNA endonuclease systems, such as the CRISPR/Cas system, serve as an immune system to prevent infection by cutting viral genetic material. Currently, CRISPR/Cas9-mediated's DNA cleavage has extensive application in biological research, and wide-reaching medical potential in human gene editing.

References

  1. 1 2 Mali, Prashant; Yang, Luhan; Esvelt, Kevin M.; Aach, John; Guell, Marc; DiCarlo, James E.; Norville, Julie E.; Church, George M. (2013-02-15). "RNA-guided human genome engineering via Cas9". Science. 339 (6121): 823–826. Bibcode:2013Sci...339..823M. doi:10.1126/science.1232033. ISSN   1095-9203. PMC   3712628 . PMID   23287722.
  2. 1 2 Doudna, Jennifer A.; Charpentier, Emmanuelle (2014-11-28). "The new frontier of genome engineering with CRISPR-Cas9". Science. 346 (6213). doi:10.1126/science.1258096. ISSN   0036-8075. PMID   25430774.
  3. 1 2 Jinek, Martin; Chylinski, Krzysztof; Fonfara, Ines; Hauer, Michael; Doudna, Jennifer A.; Charpentier, Emmanuelle (2012-08-17). "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity". Science. 337 (6096): 816–821. Bibcode:2012Sci...337..816J. doi:10.1126/science.1225829. ISSN   1095-9203. PMC   6286148 . PMID   22745249.
  4. Simpson, Larry; Sbicego, Sandro; Aphasizhev, Ruslan (2003-03-01). "Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business". RNA. 9 (3): 265–276. doi:10.1261/rna.2178403. ISSN   1355-8382. PMC   1370392 . PMID   12591999.
  5. Li, Feng; Ge, Peng; Hui, Wong H.; Atanasov, Ivo; Rogers, Kestrel; Guo, Qiang; Osato, Daren; Falick, Arnold M.; Zhou, Z. Hong; Simpson, Larry (2009-07-28). "Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria". Proceedings of the National Academy of Sciences of the United States of America. 106 (30): 12306–12310. Bibcode:2009PNAS..10612306L. doi: 10.1073/pnas.0901754106 . ISSN   1091-6490. PMC   2708173 . PMID   19590014.
  6. Estévez, Antonio M.; Simpson, Larry (November 1999). "Uridine insertion/deletion RNA editing in trypanosome mitochondria — a review". Gene. 240 (2): 247–260. doi:10.1016/S0378-1119(99)00437-0. PMID   10580144.
  7. Ochsenreiter, Torsten; Cipriano, Michael; Hajduk, Stephen L. (2007-01-01). "KISS: The kinetoplastid RNA editing sequence search tool". RNA. 13 (1): 1–4. doi:10.1261/rna.232907. ISSN   1355-8382. PMC   1705751 . PMID   17123956.
  8. 1 2 Cooper, Sinclair; Wadsworth, Elizabeth S; Ochsenreiter, Torsten; Ivens, Alasdair; Savill, Nicholas J; Schnaufer, Achim (2019-10-30). "Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei". Nucleic Acids Research. 47 (21): 11304–11325. doi:10.1093/nar/gkz928. ISSN   0305-1048. PMC   6868439 . PMID   31665448.
  9. 1 2 Blum, B.; Bakalara, N.; Simpson, L. (1990-01-26). "A model for RNA editing in kinetoplastid mitochondria: "guide" RNA molecules transcribed from maxicircle DNA provide the edited information". Cell. 60 (2): 189–198. doi:10.1016/0092-8674(90)90735-w. ISSN   0092-8674. PMID   1688737. S2CID   19656609.
  10. Blom, Daniël; Haan, Annett De; Burg, Janny Van Den; Berg, Marlene Van Den; Sloof, Paul; Jirku, Milan; Lukes, Julius; Benne, Rob (January 2000). "Mitochondrial minicircles in the free-living bodonid Bodo saltans contain two gRNA gene cassettes and are not found in large networks". RNA. 6 (1): 121–135. doi:10.1017/S1355838200992021. ISSN   1355-8382. PMC   1369900 . PMID   10668805.
  11. Read, L K; Myler, P J; Stuart, K (January 1992). "Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei". Journal of Biological Chemistry. 267 (2): 1123–1128. doi: 10.1016/s0021-9258(18)48405-0 . ISSN   0021-9258. PMID   1730639.
  12. 1 2 Aphasizhev, Ruslan; Aphasizheva, Inna (September 2011). "Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer". WIREs RNA. 2 (5): 669–685. doi:10.1002/wrna.82. ISSN   1757-7004. PMC   3154072 . PMID   21823228.
  13. Blum, Beat; Simpson, Larry (July 1990). "Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region". Cell. 62 (2): 391–397. doi:10.1016/0092-8674(90)90375-o. ISSN   0092-8674. PMID   1695552. S2CID   2181338.
  14. 1 2 Connell, Gregory J.; Byrne, Elaine M.; Simpson, Larry (1997-02-14). "Guide RNA-independent and Guide RNA-dependent Uridine Insertion into Cytochrome b mRNA in a Mitochondrial Lysate from Leishmania tarentolae ROLE OF RNA SECONDARY STRUCTURE". Journal of Biological Chemistry. 272 (7): 4212–4218. doi: 10.1074/jbc.272.7.4212 . ISSN   0021-9258. PMID   9020135.
  15. Byrne, E. M.; Connell, G. J.; Simpson, L. (December 1996). "Guide RNA-directed uridine insertion RNA editing in vitro". The EMBO Journal. 15 (23): 6758–6765. doi:10.1002/j.1460-2075.1996.tb01065.x. ISSN   0261-4189. PMC   452499 . PMID   8978701.
  16. 1 2 Maslov, Dmitri A. (October 2010). "Complete set of mitochondrial pan-edited mRNAs in Leishmania mexicana amazonensis LV78". Molecular and Biochemical Parasitology. 173 (2): 107–114. doi:10.1016/j.molbiopara.2010.05.013. ISSN   0166-6851. PMC   2913609 . PMID   20546801.
  17. Maslov, Dmitri A.; Simpson, Larry (August 1992). "The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing". Cell. 70 (3): 459–467. doi:10.1016/0092-8674(92)90170-H. PMID   1379519.
  18. Brosius, Jürgen (2003), "The contribution of RNAs and retroposition to evolutionary novelties", Origin and Evolution of New Gene Functions, Contemporary Issues in Genetics and Evolution, vol. 10, Dordrecht: Springer Netherlands, pp. 99–116, doi:10.1007/978-94-010-0229-5_1, ISBN   978-94-010-3982-6 , retrieved 2024-02-24
  19. Deschamps, P.; Lara, E.; Marande, W.; Lopez-Garcia, P.; Ekelund, F.; Moreira, D. (2010-10-28). "Phylogenomic Analysis of Kinetoplastids Supports That Trypanosomatids Arose from within Bodonids". Molecular Biology and Evolution. 28 (1): 53–58. doi:10.1093/molbev/msq289. ISSN   0737-4038. PMID   21030427.
  20. Wiedenheft, Blake; Sternberg, Samuel H.; Doudna, Jennifer A. (February 2012). "RNA-guided genetic silencing systems in bacteria and archaea". Nature. 482 (7385): 331–338. Bibcode:2012Natur.482..331W. doi:10.1038/nature10886. ISSN   1476-4687. PMID   22337052. S2CID   205227944.
  21. Bhaya, Devaki; Davison, Michelle; Barrangou, Rodolphe (2011). "CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation". Annual Review of Genetics. 45: 273–297. doi:10.1146/annurev-genet-110410-132430. ISSN   1545-2948. PMID   22060043.
  22. Terns, Michael P.; Terns, Rebecca M. (June 2011). "CRISPR-based adaptive immune systems". Current Opinion in Microbiology. 14 (3): 321–327. doi:10.1016/j.mib.2011.03.005. ISSN   1879-0364. PMC   3119747 . PMID   21531607.
  23. Stuart, Kenneth D.; Schnaufer, Achim; Ernst, Nancy Lewis; Panigrahi, Aswini K. (February 2005). "Complex management: RNA editing in trypanosomes". Trends in Biochemical Sciences. 30 (2): 97–105. doi:10.1016/j.tibs.2004.12.006. ISSN   0968-0004. PMID   15691655.
  24. 1 2 Jiang, Fuguo; Doudna, Jennifer A. (2017-05-22). "CRISPR–Cas9 Structures and Mechanisms". Annual Review of Biophysics. 46 (1): 505–529. doi:10.1146/annurev-biophys-062215-010822. ISSN   1936-122X. PMID   28375731.
  25. Chylinski, Krzysztof; Makarova, Kira S.; Charpentier, Emmanuelle; Koonin, Eugene V. (2014-04-11). "Classification and evolution of type II CRISPR-Cas systems". Nucleic Acids Research. 42 (10): 6091–6105. doi:10.1093/nar/gku241. ISSN   1362-4962. PMC   4041416 . PMID   24728998.
  26. Chylinski, Krzysztof; Le Rhun, Anaïs; Charpentier, Emmanuelle (May 2013). "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems". RNA Biology. 10 (5): 726–737. doi:10.4161/rna.24321. ISSN   1547-6286. PMC   3737331 . PMID   23563642.
  27. Hsu, Patrick D.; Scott, David A.; Weinstein, Joshua A.; Ran, F. Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J.; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J.; Marraffini, Luciano A.; Bao, Gang; Zhang, Feng (September 2013). "DNA targeting specificity of RNA-guided Cas9 nucleases". Nature Biotechnology. 31 (9): 827–832. doi:10.1038/nbt.2647. ISSN   1546-1696. PMC   3969858 . PMID   23873081.
  28. Doench, John G.; Hartenian, Ella; Graham, Daniel B.; Tothova, Zuzana; Hegde, Mudra; Smith, Ian; Sullender, Meagan; Ebert, Benjamin L.; Xavier, Ramnik J.; Root, David E. (December 2014). "Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation". Nature Biotechnology. 32 (12): 1262–1267. doi:10.1038/nbt.3026. ISSN   1546-1696. PMC   4262738 . PMID   25184501.
  29. Lin, Yanni; Cradick, Thomas J.; Brown, Matthew T.; Deshmukh, Harshavardhan; Ranjan, Piyush; Sarode, Neha; Wile, Brian M.; Vertino, Paula M.; Stewart, Frank J.; Bao, Gang (June 2014). "CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences". Nucleic Acids Research. 42 (11): 7473–7485. doi:10.1093/nar/gku402. ISSN   1362-4962. PMC   4066799 . PMID   24838573.
  30. Wong, Nathan; Liu, Weijun; Wang, Xiaowei (2015-09-18). "WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system". Genome Biology. 16: 218. bioRxiv   10.1101/026971 . doi: 10.1186/s13059-015-0784-0 . PMC   4629399 . PMID   26521937.
  31. Karvelis, Tautvydas; Gasiunas, Giedrius; Miksys, Algirdas; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (2013-05-01). "crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus". RNA Biology. 10 (5): 841–851. doi:10.4161/rna.24203. ISSN   1547-6286. PMC   3737341 . PMID   23535272.
  32. Bass, Brenda L. (2002). "RNA editing by adenosine deaminases that act on RNA". Annual Review of Biochemistry. 71: 817–846. doi:10.1146/annurev.biochem.71.110601.135501. ISSN   0066-4154. PMC   1823043 . PMID   12045112.
  33. Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki (2017-02-02). "Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing". Scientific Reports. 7: 41478. Bibcode:2017NatSR...741478F. doi:10.1038/srep41478. ISSN   2045-2322. PMC   5288656 . PMID   28148949.
  34. Maden, B. E. (1990). "The numerous modified nucleotides in eukaryotic ribosomal RNA". Progress in Nucleic Acid Research and Molecular Biology. 39: 241–303. doi:10.1016/s0079-6603(08)60629-7. ISBN   978-0-12-540039-8. ISSN   0079-6603. PMID   2247610.
  35. Ha, Minju; Kim, V. Narry (August 2014). "Regulation of microRNA biogenesis". Nature Reviews. Molecular Cell Biology. 15 (8): 509–524. doi:10.1038/nrm3838. ISSN   1471-0080. PMID   25027649.

Further reading