Mesodinium chamaeleon

Last updated

Mesodinium chamaeleon
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Class: Litostomatea
Order: Cyclotrichiida
Family: Mesodiniidae
Genus: Mesodinium
Species:
M. chamaeleon
Binomial name
Mesodinium chamaeleon
Moestrup, Garcia-Cuetos, Hansen & Fenchel, 2012

Mesodinium chamaeleon is a ciliate of the genus Mesodinium . It is known for being able to consume and maintain algae endosymbiotically for days before digesting the algae. [1] [2] It has the ability to eat red and green algae, and afterwards using the chlorophyll granules from the algae to generate energy, turning itself from being a heterotroph into an autotroph. The species was discovered in January 2012 outside the coast of Nivå, Denmark by professor Øjvind Moestrup.

In contrast to certain other species of the genus, Mesodinium chamaeleon can be maintained in culture for short periods only. It captures and ingests flagellates including cryptomonads. The prey is ingested very rapidly into a food vacuole without the cryptomonad flagella being shed and the trichocysts being discharged. The individual food vacuoles subsequently serve as photosynthetic units, each containing the cryptomonad chloroplast, a nucleus, and some mitochondria. The ingested cells are eventually digested. This type of symbiosis differs from other plastid-bearing Mesodinium spp. Among the strains that belong to Mesodinium rubrum , they are known for causing red tides in many coastal ecosystems. Although one of them denominated as M. rubrum is known as a non-toxic species, ciliate blooms can be potentially harmful to aquaculture industries. M. rubrum performs photosynthesis by sequestering the nucleus of its cryptophytic prey, in order to keep the plastids and other stolen organelles. By this, the retained ingested cryptomonad cells remain almost intact. The food strategy of M. chamaeleon appears to be intermediate between heterotrophic species, such as Mesodinium pulex and Mesodinium pupula , and species with red cryptomonad endosymbionts, such as Mesodinium rubrum. [3]

Related Research Articles

<span class="mw-page-title-main">Dinoflagellate</span> Unicellular algae with two flagella

The dinoflagellates are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered protists. Dinoflagellates are mostly marine plankton, but they also are common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey.

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Cryptomonad</span> Subphylum of algae

The cryptomonads are a group of algae, most of which have plastids. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

<span class="mw-page-title-main">Chlorarachniophyte</span> Group of algae

The chlorarachniophytes are a small group of exclusively marine algae widely distributed in tropical and temperate waters. They are typically mixotrophic, ingesting bacteria and smaller protists as well as conducting photosynthesis. Normally they have the form of small amoebae, with branching cytoplasmic extensions that capture prey and connect the cells together, forming a net. They may also form flagellate zoospores, which characteristically have a single subapical flagellum that spirals backwards around the cell body, and walled coccoid cells.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Kleptoplasty</span> Form of algae symbiosis

Kleptoplasty or kleptoplastidy is a process in symbiotic relationships whereby plastids, notably chloroplasts from algae, are sequestered by the host. The word is derived from Kleptes (κλέπτης) which is Greek for thief. The alga is eaten normally and partially digested, leaving the plastid intact. The plastids are maintained within the host, temporarily continuing photosynthesis and benefiting the host.

<span class="mw-page-title-main">Cryptophyceae</span> Class of single-celled organisms

The cryptophyceae are a class of algae, most of which have plastids. About 220 species are known, and they are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

<i>Paulinella</i> Genus of single-celled organisms

Paulinella is a genus of at least eleven species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone.

<span class="mw-page-title-main">Protozoa</span> Single-celled eukaryotic organisms that feed on organic matter

Protozoa are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".

Plagiopyla is a genus of ciliates. It includes nine species:

Goniomonas is a genus of Cryptomonads and contains five species. It is a genus of single-celled eukaryotes, including both freshwater and marine species. It lacks plastids, which is very unusual among all of the Cryptophyte genera. It may reflect one of only a small number of times that the Cryptophytes evolved into freshwater habitats. Goniomonas seems to have a number of freshwater relatives which have not yet been cultured and named.

<i>Guillardia</i> Genus of single-celled organisms

Guillardia is a genus of marine biflagellate cryptomonad algae with a plastid obtained through secondary endosymbiosis of a red alga.

<i>Hemiselmis</i> Genus of single-celled organisms

Hemiselmis is a genus of cryptomonads.

<i>Dinophysis</i> Genus of single-celled organisms

Dinophysis is a genus of dinoflagellates common in tropical, temperate, coastal and oceanic waters. It was first described in 1839 by Christian Gottfried Ehrenberg.

<i>Climacostomum</i> Genus of single-celled organisms

Climacostomum is a genus of unicellular ciliates, belonging to the class Heterotrichea.

Perkinsidae is a family of alveolates in the phylum Perkinsozoa, a sister group to the dinoflagellates.

<i>Dinophysis acuminata</i> Species of dinoflagellate

Dinophysis acuminata is a marine plankton species of dinoflagellates that is found in coastal waters of the north Atlantic and Pacific oceans. The genus Dinophysis includes both phototrophic and heterotrophic species. D. acuminata is one of several phototrophic species of Dinophysis classed as toxic, as they produce okadaic acid which can cause diarrhetic shellfish poisoning (DSP). Okadiac acid is taken up by shellfish and has been found in the soft tissue of mussels and the liver of flounder species. When contaminated animals are consumed, they cause severe diarrhoea. D. acuminata blooms are constant threat to and indication of diarrhoeatic shellfish poisoning outbreaks.

<i>Mesodinium rubrum</i> Species of single-celled organism

Mesodinium rubrum is a species of ciliates. It constitutes a plankton community and is found throughout the year, most abundantly in spring and fall, in coastal areas. Although discovered in 1908, its scientific importance came into light in the late 1960s when it attracted scientists by the recurrent red colouration it caused by forming massive blooms, that cause red tides in the oceans.

<span class="mw-page-title-main">Mixotrophic dinoflagellate</span> Plankton

Dinoflagellates are eukaryotic plankton, existing in marine and freshwater environments. Previously, dinoflagellates had been grouped into two categories, phagotrophs and phototrophs. Mixotrophs, however include a combination of phagotrophy and phototrophy. Mixotrophic dinoflagellates are a sub-type of planktonic dinoflagellates and are part of the phylum Dinoflagellata. They are flagellated eukaryotes that combine photoautotrophy when light is available, and heterotrophy via phagocytosis. Dinoflagellates are one of the most diverse and numerous species of phytoplankton, second to diatoms.

<i>Mesodinium</i> Genus of single-celled organisms

Mesodinium is a genus of ciliates that are widely distributed and are abundant in marine and brackish waters.

References

  1. Michael Marshall (13 January 2012). "Zoologger: Unique life form is half plant, half animal". New Scientist.
  2. Moestrup, Ø.; Garcia-Cuetos, L.; Hansen, P. J.; Fenchel, T. (2012). "Studies on the Genus Mesodinium I: Ultrastructure and Description of Mesodinium chamaeleon n. sp., a Benthic Marine Species with Green or Red Chloroplasts". Journal of Eukaryotic Microbiology. 59 (1): 20–39. doi:10.1111/j.1550-7408.2011.00593.x. PMID   22221919. S2CID   205760168.
  3. Moestrup, Ojvind; Garcia-Cuetos, Lydia; Hansen, Per Juel; Fenchel, Tom (January 2012). "Studies on the Genus Mesodinium I: Ultrastructure and Description of Mesodinium chamaeleon n. sp., a Benthic Marine Species with Green or Red Chloroplasts". Journal of Eukaryotic Microbiology. 59 (1): 20–39. doi:10.1111/j.1550-7408.2011.00593.x. PMID   22221919. S2CID   205760168.

[1] [2] [3]

  1. Johnson, Matthew D, "The Genetic Diversity of Mesodinium and Associated Cryptophytes", 2016, Vol.7, p.2017-2017.
  2. Moeller, Holly, "Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora)", 2021-06, Vol.57 (3), p.916-930
  3. Moeller, Holly, "Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon", 2018-03, Vol.65 (2), p.148-158